Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

from __future__ import print_function, division 

 

from sympy.core.add import Add 

from sympy.core.compatibility import as_int, is_sequence, range 

from sympy.core.exprtools import factor_terms 

from sympy.core.function import _mexpand 

from sympy.core.mul import Mul 

from sympy.core.numbers import Rational 

from sympy.core.numbers import igcdex, ilcm, igcd 

from sympy.core.power import integer_nthroot, isqrt 

from sympy.core.relational import Eq 

from sympy.core.singleton import S 

from sympy.core.symbol import Symbol, symbols 

from sympy.functions.elementary.complexes import sign 

from sympy.functions.elementary.integers import floor 

from sympy.functions.elementary.miscellaneous import sqrt 

from sympy.matrices.dense import MutableDenseMatrix as Matrix 

from sympy.ntheory.factor_ import ( 

divisors, factorint, multiplicity, perfect_power) 

from sympy.ntheory.generate import nextprime 

from sympy.ntheory.primetest import is_square, isprime 

from sympy.ntheory.residue_ntheory import sqrt_mod 

from sympy.polys.polyerrors import GeneratorsNeeded 

from sympy.polys.polytools import Poly, factor_list 

from sympy.simplify.simplify import signsimp 

from sympy.solvers.solvers import check_assumptions 

from sympy.solvers.solveset import solveset_real 

from sympy.utilities import default_sort_key, numbered_symbols 

from sympy.utilities.misc import filldedent 

 

 

 

# these are imported with 'from sympy.solvers.diophantine import * 

__all__ = ['diophantine', 'classify_diop'] 

 

 

# these types are known (but not necessarily handled) 

diop_known = { 

"binary_quadratic", 

"cubic_thue", 

"general_pythagorean", 

"general_sum_of_even_powers", 

"general_sum_of_squares", 

"homogeneous_general_quadratic", 

"homogeneous_ternary_quadratic", 

"homogeneous_ternary_quadratic_normal", 

"inhomogeneous_general_quadratic", 

"inhomogeneous_ternary_quadratic", 

"linear", 

"univariate"} 

 

 

def _is_int(i): 

try: 

as_int(i) 

return True 

except ValueError: 

pass 

 

 

def _sorted_tuple(*i): 

return tuple(sorted(i)) 

 

 

def _remove_gcd(*x): 

try: 

g = igcd(*x) 

return tuple([i//g for i in x]) 

except ValueError: 

return x 

except TypeError: 

raise TypeError('_remove_gcd(a,b,c) or _remove_gcd(*container)') 

 

 

def _rational_pq(a, b): 

# return `(numer, denom)` for a/b; sign in numer and gcd removed 

return _remove_gcd(sign(b)*a, abs(b)) 

 

 

def _nint_or_floor(p, q): 

# return nearest int to p/q; in case of tie return floor(p/q) 

w, r = divmod(p, q) 

if abs(r) <= abs(q)//2: 

return w 

return w + 1 

 

 

def _odd(i): 

return i % 2 != 0 

 

 

def _even(i): 

return i % 2 == 0 

 

 

def diophantine(eq, param=symbols("t", integer=True), syms=None, 

permute=False): 

""" 

Simplify the solution procedure of diophantine equation ``eq`` by 

converting it into a product of terms which should equal zero. 

 

For example, when solving, `x^2 - y^2 = 0` this is treated as 

`(x + y)(x - y) = 0` and `x + y = 0` and `x - y = 0` are solved 

independently and combined. Each term is solved by calling 

``diop_solve()``. 

 

Output of ``diophantine()`` is a set of tuples. The elements of the 

tuple are the solutions for each variable in the equation and 

are arranged according to the alphabetic ordering of the variables. 

e.g. For an equation with two variables, `a` and `b`, the first 

element of the tuple is the solution for `a` and the second for `b`. 

 

Usage 

===== 

 

``diophantine(eq, t, syms)``: Solve the diophantine 

equation ``eq``. 

``t`` is the optional parameter to be used by ``diop_solve()``. 

``syms`` is an optional list of symbols which determines the 

order of the elements in the returned tuple. 

 

By default, only the base solution is returned. If ``permute`` is set to 

True then permutations of the base solution and/or permutations of the 

signs of the values will be returned when applicable. 

 

>>> from sympy.solvers.diophantine import diophantine 

>>> from sympy.abc import a, b 

>>> eq = a**4 + b**4 - (2**4 + 3**4) 

>>> diophantine(eq) 

{(2, 3)} 

>>> diophantine(eq, permute=True) 

{(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)} 

 

Details 

======= 

 

``eq`` should be an expression which is assumed to be zero. 

``t`` is the parameter to be used in the solution. 

 

Examples 

======== 

 

>>> from sympy.abc import x, y, z 

>>> diophantine(x**2 - y**2) 

{(t_0, -t_0), (t_0, t_0)} 

 

>>> diophantine(x*(2*x + 3*y - z)) 

{(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)} 

>>> diophantine(x**2 + 3*x*y + 4*x) 

{(0, n1), (3*t_0 - 4, -t_0)} 

 

See Also 

======== 

 

diop_solve() 

sympy.utilities.iterables.permute_signs 

sympy.utilities.iterables.signed_permutations 

""" 

 

from sympy.utilities.iterables import ( 

subsets, permute_signs, signed_permutations) 

 

if isinstance(eq, Eq): 

eq = eq.lhs - eq.rhs 

 

try: 

var = list(eq.expand(force=True).free_symbols) 

var.sort(key=default_sort_key) 

if syms: 

if not is_sequence(syms): 

raise TypeError( 

'syms should be given as a sequence, e.g. a list') 

syms = [i for i in syms if i in var] 

if syms != var: 

dict_sym_index = dict(zip(syms, range(len(syms)))) 

return {tuple([t[dict_sym_index[i]] for i in var]) 

for t in diophantine(eq, param)} 

n, d = eq.as_numer_denom() 

if not n.free_symbols: 

return set() 

if d.free_symbols: 

dsol = diophantine(d) 

good = diophantine(n) - dsol 

return {s for s in good if _mexpand(d.subs(zip(var, s)))} 

else: 

eq = n 

eq = factor_terms(eq) 

assert not eq.is_number 

eq = eq.as_independent(*var, as_Add=False)[1] 

p = Poly(eq) 

assert not any(g.is_number for g in p.gens) 

eq = p.as_expr() 

assert eq.is_polynomial() 

except (GeneratorsNeeded, AssertionError, AttributeError): 

raise TypeError(filldedent(''' 

Equation should be a polynomial with Rational coefficients.''')) 

 

# permute only sign 

do_permute_signs = False 

# permute sign and values 

do_permute_signs_var = False 

# permute few signs 

permute_few_signs = False 

try: 

# if we know that factoring should not be attempted, skip 

# the factoring step 

v, c, t = classify_diop(eq) 

 

# check for permute sign 

if permute: 

len_var = len(v) 

permute_signs_for = [ 

'general_sum_of_squares', 

'general_sum_of_even_powers'] 

permute_signs_check = [ 

'homogeneous_ternary_quadratic', 

'homogeneous_ternary_quadratic_normal', 

'binary_quadratic'] 

if t in permute_signs_for: 

do_permute_signs_var = True 

elif t in permute_signs_check: 

# if all the variables in eq have even powers 

# then do_permute_sign = True 

if len_var == 3: 

var_mul = list(subsets(v, 2)) 

# here var_mul is like [(x, y), (x, z), (y, z)] 

xy_coeff = True 

x_coeff = True 

var1_mul_var2 = map(lambda a: a[0]*a[1], var_mul) 

# if coeff(y*z), coeff(y*x), coeff(x*z) is not 0 then 

# `xy_coeff` => True and do_permute_sign => False. 

# Means no permuted solution. 

for v1_mul_v2 in var1_mul_var2: 

try: 

coeff = c[v1_mul_v2] 

except KeyError: 

coeff = 0 

xy_coeff = bool(xy_coeff) and bool(coeff) 

var_mul = list(subsets(v, 1)) 

# here var_mul is like [(x,), (y, )] 

for v1 in var_mul: 

try: 

coeff = c[var[0]] 

except KeyError: 

coeff = 0 

x_coeff = bool(x_coeff) and bool(coeff) 

if not any([xy_coeff, x_coeff]): 

# means only x**2, y**2, z**2, const is present 

do_permute_signs = True 

elif not x_coeff: 

permute_few_signs = True 

elif len_var == 2: 

var_mul = list(subsets(v, 2)) 

# here var_mul is like [(x, y)] 

xy_coeff = True 

x_coeff = True 

var1_mul_var2 = map(lambda x: x[0]*x[1], var_mul) 

for v1_mul_v2 in var1_mul_var2: 

try: 

coeff = c[v1_mul_v2] 

except KeyError: 

coeff = 0 

xy_coeff = bool(xy_coeff) and bool(coeff) 

var_mul = list(subsets(v, 1)) 

# here var_mul is like [(x,), (y, )] 

for v1 in var_mul: 

try: 

coeff = c[var[0]] 

except KeyError: 

coeff = 0 

x_coeff = bool(x_coeff) and bool(coeff) 

if not any([xy_coeff, x_coeff]): 

# means only x**2, y**2 and const is present 

# so we can get more soln by permuting this soln. 

do_permute_signs = True 

elif not x_coeff: 

# when coeff(x), coeff(y) is not present then signs of 

# x, y can be permuted such that their sign are same 

# as sign of x*y. 

# e.g 1. (x_val,y_val)=> (x_val,y_val), (-x_val,-y_val) 

# 2. (-x_vall, y_val)=> (-x_val,y_val), (x_val,-y_val) 

permute_few_signs = True 

if t == 'general_sum_of_squares': 

# trying to factor such expressions will sometimes hang 

terms = [(eq, 1)] 

else: 

raise TypeError 

except (TypeError, NotImplementedError): 

terms = factor_list(eq)[1] 

 

sols = set([]) 

 

for term in terms: 

 

base, _ = term 

var_t, _, eq_type = classify_diop(base, _dict=False) 

_, base = signsimp(base, evaluate=False).as_coeff_Mul() 

solution = diop_solve(base, param) 

 

if eq_type in [ 

"linear", 

"homogeneous_ternary_quadratic", 

"homogeneous_ternary_quadratic_normal", 

"general_pythagorean"]: 

sols.add(merge_solution(var, var_t, solution)) 

 

elif eq_type in [ 

"binary_quadratic", 

"general_sum_of_squares", 

"general_sum_of_even_powers", 

"univariate"]: 

for sol in solution: 

sols.add(merge_solution(var, var_t, sol)) 

 

else: 

raise NotImplementedError('unhandled type: %s' % eq_type) 

 

# remove null merge results 

if () in sols: 

sols.remove(()) 

null = tuple([0]*len(var)) 

# if there is no solution, return trivial solution 

if not sols and eq.subs(zip(var, null)) is S.Zero: 

sols.add(null) 

final_soln = set([]) 

for sol in sols: 

if all(_is_int(s) for s in sol): 

if do_permute_signs: 

permuted_sign = set(permute_signs(sol)) 

final_soln.update(permuted_sign) 

elif permute_few_signs: 

lst = list(permute_signs(sol)) 

lst = list(filter(lambda x: x[0]*x[1] == sol[1]*sol[0], lst)) 

permuted_sign = set(lst) 

final_soln.update(permuted_sign) 

elif do_permute_signs_var: 

permuted_sign_var = set(signed_permutations(sol)) 

final_soln.update(permuted_sign_var) 

else: 

final_soln.add(sol) 

else: 

final_soln.add(sol) 

return final_soln 

 

 

def merge_solution(var, var_t, solution): 

""" 

This is used to construct the full solution from the solutions of sub 

equations. 

 

For example when solving the equation `(x - y)(x^2 + y^2 - z^2) = 0`, 

solutions for each of the equations `x - y = 0` and `x^2 + y^2 - z^2` are 

found independently. Solutions for `x - y = 0` are `(x, y) = (t, t)`. But 

we should introduce a value for z when we output the solution for the 

original equation. This function converts `(t, t)` into `(t, t, n_{1})` 

where `n_{1}` is an integer parameter. 

""" 

sol = [] 

 

if None in solution: 

return () 

 

solution = iter(solution) 

params = numbered_symbols("n", integer=True, start=1) 

for v in var: 

if v in var_t: 

sol.append(next(solution)) 

else: 

sol.append(next(params)) 

 

for val, symb in zip(sol, var): 

if check_assumptions(val, **symb.assumptions0) is False: 

return tuple() 

 

return tuple(sol) 

 

 

def diop_solve(eq, param=symbols("t", integer=True)): 

""" 

Solves the diophantine equation ``eq``. 

 

Unlike ``diophantine()``, factoring of ``eq`` is not attempted. Uses 

``classify_diop()`` to determine the type of the equation and calls 

the appropriate solver function. 

 

Usage 

===== 

 

``diop_solve(eq, t)``: Solve diophantine equation, ``eq`` using ``t`` 

as a parameter if needed. 

 

Details 

======= 

 

``eq`` should be an expression which is assumed to be zero. 

``t`` is a parameter to be used in the solution. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import diop_solve 

>>> from sympy.abc import x, y, z, w 

>>> diop_solve(2*x + 3*y - 5) 

(3*t_0 - 5, -2*t_0 + 5) 

>>> diop_solve(4*x + 3*y - 4*z + 5) 

(t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5) 

>>> diop_solve(x + 3*y - 4*z + w - 6) 

(t_0, t_0 + t_1, 6*t_0 + 5*t_1 + 4*t_2 - 6, 5*t_0 + 4*t_1 + 3*t_2 - 6) 

>>> diop_solve(x**2 + y**2 - 5) 

{(-2, -1), (-2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)} 

 

 

See Also 

======== 

 

diophantine() 

""" 

var, coeff, eq_type = classify_diop(eq, _dict=False) 

 

if eq_type == "linear": 

return _diop_linear(var, coeff, param) 

 

elif eq_type == "binary_quadratic": 

return _diop_quadratic(var, coeff, param) 

 

elif eq_type == "homogeneous_ternary_quadratic": 

x_0, y_0, z_0 = _diop_ternary_quadratic(var, coeff) 

return _parametrize_ternary_quadratic( 

(x_0, y_0, z_0), var, coeff) 

 

elif eq_type == "homogeneous_ternary_quadratic_normal": 

x_0, y_0, z_0 = _diop_ternary_quadratic_normal(var, coeff) 

return _parametrize_ternary_quadratic( 

(x_0, y_0, z_0), var, coeff) 

 

elif eq_type == "general_pythagorean": 

return _diop_general_pythagorean(var, coeff, param) 

 

elif eq_type == "univariate": 

return set([(int(i),) for i in solveset_real( 

eq, var[0]).intersect(S.Integers)]) 

 

elif eq_type == "general_sum_of_squares": 

return _diop_general_sum_of_squares(var, -int(coeff[1]), limit=S.Infinity) 

 

elif eq_type == "general_sum_of_even_powers": 

for k in coeff.keys(): 

if k.is_Pow and coeff[k]: 

p = k.exp 

return _diop_general_sum_of_even_powers(var, p, -int(coeff[1]), limit=S.Infinity) 

 

if eq_type is not None and eq_type not in diop_known: 

raise ValueError(filldedent(''' 

Alhough this type of equation was identified, it is not yet 

handled. It should, however, be listed in `diop_known` at the 

top of this file. Developers should see comments at the end of 

`classify_diop`. 

''')) # pragma: no cover 

else: 

raise NotImplementedError( 

'No solver has been written for %s.' % eq_type) 

 

 

def classify_diop(eq, _dict=True): 

# docstring supplied externally 

try: 

var = list(eq.free_symbols) 

assert var 

except (AttributeError, AssertionError): 

raise ValueError('equation should have 1 or more free symbols') 

var.sort(key=default_sort_key) 

eq = eq.expand(force=True) 

coeff = eq.as_coefficients_dict() 

if not all(_is_int(c) for c in coeff.values()): 

raise TypeError("Coefficients should be Integers") 

 

diop_type = None 

total_degree = Poly(eq).total_degree() 

homogeneous = 1 not in coeff 

if total_degree == 1: 

diop_type = "linear" 

 

elif len(var) == 1: 

diop_type = "univariate" 

 

elif total_degree == 2 and len(var) == 2: 

diop_type = "binary_quadratic" 

 

elif total_degree == 2 and len(var) == 3 and homogeneous: 

if set(coeff) & set(var): 

diop_type = "inhomogeneous_ternary_quadratic" 

else: 

nonzero = [k for k in coeff if coeff[k]] 

if len(nonzero) == 3 and all(i**2 in nonzero for i in var): 

diop_type = "homogeneous_ternary_quadratic_normal" 

else: 

diop_type = "homogeneous_ternary_quadratic" 

 

elif total_degree == 2 and len(var) >= 3: 

if set(coeff) & set(var): 

diop_type = "inhomogeneous_general_quadratic" 

else: 

# there may be Pow keys like x**2 or Mul keys like x*y 

if any(k.is_Mul for k in coeff): # cross terms 

if not homogeneous: 

diop_type = "inhomogeneous_general_quadratic" 

else: 

diop_type = "homogeneous_general_quadratic" 

else: # all squares: x**2 + y**2 + ... + constant 

if all(coeff[k] == 1 for k in coeff if k != 1): 

diop_type = "general_sum_of_squares" 

elif all(is_square(abs(coeff[k])) for k in coeff): 

if abs(sum(sign(coeff[k]) for k in coeff)) == \ 

len(var) - 2: 

# all but one has the same sign 

# e.g. 4*x**2 + y**2 - 4*z**2 

diop_type = "general_pythagorean" 

 

elif total_degree == 3 and len(var) == 2: 

diop_type = "cubic_thue" 

 

elif (total_degree > 3 and total_degree % 2 == 0 and 

all(k.is_Pow and k.exp == total_degree for k in coeff if k != 1)): 

if all(coeff[k] == 1 for k in coeff if k != 1): 

diop_type = 'general_sum_of_even_powers' 

 

if diop_type is not None: 

return var, dict(coeff) if _dict else coeff, diop_type 

 

# new diop type instructions 

# -------------------------- 

# if this error raises and the equation *can* be classified, 

# * it should be identified in the if-block above 

# * the type should be added to the diop_known 

# if a solver can be written for it, 

# * a dedicated handler should be written (e.g. diop_linear) 

# * it should be passed to that handler in diop_solve 

raise NotImplementedError(filldedent(''' 

This equation is not yet recognized or else has not been 

simplified sufficiently to put it in a form recognized by 

diop_classify().''')) 

 

 

classify_diop.func_doc = ''' 

Helper routine used by diop_solve() to find information about ``eq``. 

 

Returns a tuple containing the type of the diophantine equation 

along with the variables (free symbols) and their coefficients. 

Variables are returned as a list and coefficients are returned 

as a dict with the key being the respective term and the constant 

term is keyed to 1. The type is one of the following: 

 

* %s 

 

Usage 

===== 

 

``classify_diop(eq)``: Return variables, coefficients and type of the 

``eq``. 

 

Details 

======= 

 

``eq`` should be an expression which is assumed to be zero. 

``_dict`` is for internal use: when True (default) a dict is returned, 

otherwise a defaultdict which supplies 0 for missing keys is returned. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import classify_diop 

>>> from sympy.abc import x, y, z, w, t 

>>> classify_diop(4*x + 6*y - 4) 

([x, y], {1: -4, x: 4, y: 6}, 'linear') 

>>> classify_diop(x + 3*y -4*z + 5) 

([x, y, z], {1: 5, x: 1, y: 3, z: -4}, 'linear') 

>>> classify_diop(x**2 + y**2 - x*y + x + 5) 

([x, y], {1: 5, x: 1, x**2: 1, y**2: 1, x*y: -1}, 'binary_quadratic') 

''' % ('\n * '.join(sorted(diop_known))) 

 

 

def diop_linear(eq, param=symbols("t", integer=True)): 

""" 

Solves linear diophantine equations. 

 

A linear diophantine equation is an equation of the form `a_{1}x_{1} + 

a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are 

integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables. 

 

Usage 

===== 

 

``diop_linear(eq)``: Returns a tuple containing solutions to the 

diophantine equation ``eq``. Values in the tuple is arranged in the same 

order as the sorted variables. 

 

Details 

======= 

 

``eq`` is a linear diophantine equation which is assumed to be zero. 

``param`` is the parameter to be used in the solution. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import diop_linear 

>>> from sympy.abc import x, y, z, t 

>>> diop_linear(2*x - 3*y - 5) # solves equation 2*x - 3*y - 5 == 0 

(3*t_0 - 5, 2*t_0 - 5) 

 

Here x = -3*t_0 - 5 and y = -2*t_0 - 5 

 

>>> diop_linear(2*x - 3*y - 4*z -3) 

(t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3) 

 

See Also 

======== 

 

diop_quadratic(), diop_ternary_quadratic(), diop_general_pythagorean(), 

diop_general_sum_of_squares() 

""" 

from sympy.core.function import count_ops 

var, coeff, diop_type = classify_diop(eq, _dict=False) 

 

if diop_type == "linear": 

return _diop_linear(var, coeff, param) 

 

 

def _diop_linear(var, coeff, param): 

""" 

Solves diophantine equations of the form: 

 

a_0*x_0 + a_1*x_1 + ... + a_n*x_n == c 

 

Note that no solution exists if gcd(a_0, ..., a_n) doesn't divide c. 

""" 

 

if 1 in coeff: 

# negate coeff[] because input is of the form: ax + by + c == 0 

# but is used as: ax + by == -c 

c = -coeff[1] 

else: 

c = 0 

 

# Some solutions will have multiple free variables in their solutions. 

if param is None: 

params = [symbols('t')]*len(var) 

else: 

temp = str(param) + "_%i" 

params = [symbols(temp % i, integer=True) for i in range(len(var))] 

 

if len(var) == 1: 

q, r = divmod(c, coeff[var[0]]) 

if not r: 

return (q,) 

else: 

return (None,) 

 

''' 

base_solution_linear() can solve diophantine equations of the form: 

 

a*x + b*y == c 

 

We break down multivariate linear diophantine equations into a 

series of bivariate linear diophantine equations which can then 

be solved individually by base_solution_linear(). 

 

Consider the following: 

 

a_0*x_0 + a_1*x_1 + a_2*x_2 == c 

 

which can be re-written as: 

 

a_0*x_0 + g_0*y_0 == c 

 

where 

 

g_0 == gcd(a_1, a_2) 

 

and 

 

y == (a_1*x_1)/g_0 + (a_2*x_2)/g_0 

 

This leaves us with two binary linear diophantine equations. 

For the first equation: 

 

a == a_0 

b == g_0 

c == c 

 

For the second: 

 

a == a_1/g_0 

b == a_2/g_0 

c == the solution we find for y_0 in the first equation. 

 

The arrays A and B are the arrays of integers used for 

'a' and 'b' in each of the n-1 bivariate equations we solve. 

''' 

 

A = [coeff[v] for v in var] 

B = [] 

if len(var) > 2: 

B.append(igcd(A[-2], A[-1])) 

A[-2] = A[-2] // B[0] 

A[-1] = A[-1] // B[0] 

for i in range(len(A) - 3, 0, -1): 

gcd = igcd(B[0], A[i]) 

B[0] = B[0] // gcd 

A[i] = A[i] // gcd 

B.insert(0, gcd) 

B.append(A[-1]) 

 

''' 

Consider the trivariate linear equation: 

 

4*x_0 + 6*x_1 + 3*x_2 == 2 

 

This can be re-written as: 

 

4*x_0 + 3*y_0 == 2 

 

where 

 

y_0 == 2*x_1 + x_2 

(Note that gcd(3, 6) == 3) 

 

The complete integral solution to this equation is: 

 

x_0 == 2 + 3*t_0 

y_0 == -2 - 4*t_0 

 

where 't_0' is any integer. 

 

Now that we have a solution for 'x_0', find 'x_1' and 'x_2': 

 

2*x_1 + x_2 == -2 - 4*t_0 

 

We can then solve for '-2' and '-4' independently, 

and combine the results: 

 

2*x_1a + x_2a == -2 

x_1a == 0 + t_0 

x_2a == -2 - 2*t_0 

 

2*x_1b + x_2b == -4*t_0 

x_1b == 0*t_0 + t_1 

x_2b == -4*t_0 - 2*t_1 

 

==> 

 

x_1 == t_0 + t_1 

x_2 == -2 - 6*t_0 - 2*t_1 

 

where 't_0' and 't_1' are any integers. 

 

Note that: 

 

4*(2 + 3*t_0) + 6*(t_0 + t_1) + 3*(-2 - 6*t_0 - 2*t_1) == 2 

 

for any integral values of 't_0', 't_1'; as required. 

 

This method is generalised for many variables, below. 

 

''' 

solutions = [] 

for i in range(len(B)): 

tot_x, tot_y = [], [] 

 

for j, arg in enumerate(Add.make_args(c)): 

if arg.is_Integer: 

# example: 5 -> k = 5 

k, p = arg, S.One 

pnew = params[0] 

else: # arg is a Mul or Symbol 

# example: 3*t_1 -> k = 3 

# example: t_0 -> k = 1 

k, p = arg.as_coeff_Mul() 

pnew = params[params.index(p) + 1] 

 

sol = sol_x, sol_y = base_solution_linear(k, A[i], B[i], pnew) 

 

if p is S.One: 

if None in sol: 

return tuple([None]*len(var)) 

else: 

# convert a + b*pnew -> a*p + b*pnew 

if isinstance(sol_x, Add): 

sol_x = sol_x.args[0]*p + sol_x.args[1] 

if isinstance(sol_y, Add): 

sol_y = sol_y.args[0]*p + sol_y.args[1] 

 

tot_x.append(sol_x) 

tot_y.append(sol_y) 

 

solutions.append(Add(*tot_x)) 

c = Add(*tot_y) 

 

solutions.append(c) 

if param is None: 

# just keep the additive constant (i.e. replace t with 0) 

solutions = [i.as_coeff_Add()[0] for i in solutions] 

return tuple(solutions) 

 

 

def base_solution_linear(c, a, b, t=None): 

""" 

Return the base solution for the linear equation, `ax + by = c`. 

 

Used by ``diop_linear()`` to find the base solution of a linear 

Diophantine equation. If ``t`` is given then the parametrized solution is 

returned. 

 

Usage 

===== 

 

``base_solution_linear(c, a, b, t)``: ``a``, ``b``, ``c`` are coefficients 

in `ax + by = c` and ``t`` is the parameter to be used in the solution. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import base_solution_linear 

>>> from sympy.abc import t 

>>> base_solution_linear(5, 2, 3) # equation 2*x + 3*y = 5 

(-5, 5) 

>>> base_solution_linear(0, 5, 7) # equation 5*x + 7*y = 0 

(0, 0) 

>>> base_solution_linear(5, 2, 3, t) # equation 2*x + 3*y = 5 

(3*t - 5, -2*t + 5) 

>>> base_solution_linear(0, 5, 7, t) # equation 5*x + 7*y = 0 

(7*t, -5*t) 

""" 

a, b, c = _remove_gcd(a, b, c) 

 

if c == 0: 

if t is not None: 

if b < 0: 

t = -t 

return (b*t , -a*t) 

else: 

return (0, 0) 

else: 

x0, y0, d = igcdex(abs(a), abs(b)) 

 

x0 *= sign(a) 

y0 *= sign(b) 

 

if divisible(c, d): 

if t is not None: 

if b < 0: 

t = -t 

return (c*x0 + b*t, c*y0 - a*t) 

else: 

return (c*x0, c*y0) 

else: 

return (None, None) 

 

 

def divisible(a, b): 

""" 

Returns `True` if ``a`` is divisible by ``b`` and `False` otherwise. 

""" 

return not a % b 

 

 

def diop_quadratic(eq, param=symbols("t", integer=True)): 

""" 

Solves quadratic diophantine equations. 

 

i.e. equations of the form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`. Returns a 

set containing the tuples `(x, y)` which contains the solutions. If there 

are no solutions then `(None, None)` is returned. 

 

Usage 

===== 

 

``diop_quadratic(eq, param)``: ``eq`` is a quadratic binary diophantine 

equation. ``param`` is used to indicate the parameter to be used in the 

solution. 

 

Details 

======= 

 

``eq`` should be an expression which is assumed to be zero. 

``param`` is a parameter to be used in the solution. 

 

Examples 

======== 

 

>>> from sympy.abc import x, y, t 

>>> from sympy.solvers.diophantine import diop_quadratic 

>>> diop_quadratic(x**2 + y**2 + 2*x + 2*y + 2, t) 

{(-1, -1)} 

 

References 

========== 

 

.. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online], 

Available: http://www.alpertron.com.ar/METHODS.HTM 

.. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online], 

Available: http://www.jpr2718.org/ax2p.pdf 

 

See Also 

======== 

 

diop_linear(), diop_ternary_quadratic(), diop_general_sum_of_squares(), 

diop_general_pythagorean() 

""" 

var, coeff, diop_type = classify_diop(eq, _dict=False) 

 

if diop_type == "binary_quadratic": 

return _diop_quadratic(var, coeff, param) 

 

 

def _diop_quadratic(var, coeff, t): 

 

x, y = var 

 

A = coeff[x**2] 

B = coeff[x*y] 

C = coeff[y**2] 

D = coeff[x] 

E = coeff[y] 

F = coeff[1] 

 

A, B, C, D, E, F = [as_int(i) for i in _remove_gcd(A, B, C, D, E, F)] 

 

# (1) Simple-Hyperbolic case: A = C = 0, B != 0 

# In this case equation can be converted to (Bx + E)(By + D) = DE - BF 

# We consider two cases; DE - BF = 0 and DE - BF != 0 

# More details, http://www.alpertron.com.ar/METHODS.HTM#SHyperb 

 

sol = set([]) 

discr = B**2 - 4*A*C 

if A == 0 and C == 0 and B != 0: 

 

if D*E - B*F == 0: 

q, r = divmod(E, B) 

if not r: 

sol.add((-q, t)) 

q, r = divmod(D, B) 

if not r: 

sol.add((t, -q)) 

else: 

div = divisors(D*E - B*F) 

div = div + [-term for term in div] 

for d in div: 

x0, r = divmod(d - E, B) 

if not r: 

q, r = divmod(D*E - B*F, d) 

if not r: 

y0, r = divmod(q - D, B) 

if not r: 

sol.add((x0, y0)) 

 

# (2) Parabolic case: B**2 - 4*A*C = 0 

# There are two subcases to be considered in this case. 

# sqrt(c)D - sqrt(a)E = 0 and sqrt(c)D - sqrt(a)E != 0 

# More Details, http://www.alpertron.com.ar/METHODS.HTM#Parabol 

 

elif discr == 0: 

 

if A == 0: 

s = _diop_quadratic([y, x], coeff, t) 

for soln in s: 

sol.add((soln[1], soln[0])) 

 

else: 

g = sign(A)*igcd(A, C) 

a = A // g 

b = B // g 

c = C // g 

e = sign(B/A) 

 

sqa = isqrt(a) 

sqc = isqrt(c) 

_c = e*sqc*D - sqa*E 

if not _c: 

z = symbols("z", real=True) 

eq = sqa*g*z**2 + D*z + sqa*F 

roots = solveset_real(eq, z).intersect(S.Integers) 

for root in roots: 

ans = diop_solve(sqa*x + e*sqc*y - root) 

sol.add((ans[0], ans[1])) 

 

elif _is_int(c): 

solve_x = lambda u: -e*sqc*g*_c*t**2 - (E + 2*e*sqc*g*u)*t\ 

- (e*sqc*g*u**2 + E*u + e*sqc*F) // _c 

 

solve_y = lambda u: sqa*g*_c*t**2 + (D + 2*sqa*g*u)*t \ 

+ (sqa*g*u**2 + D*u + sqa*F) // _c 

 

for z0 in range(0, abs(_c)): 

# Check if the coefficients of y and x obtained are integers or not 

if (divisible(sqa*g*z0**2 + D*z0 + sqa*F, _c) and 

divisible(e*sqc**g*z0**2 + E*z0 + e*sqc*F, _c)): 

sol.add((solve_x(z0), solve_y(z0))) 

 

# (3) Method used when B**2 - 4*A*C is a square, is described in p. 6 of the below paper 

# by John P. Robertson. 

# http://www.jpr2718.org/ax2p.pdf 

 

elif is_square(discr): 

if A != 0: 

r = sqrt(discr) 

u, v = symbols("u, v", integer=True) 

eq = _mexpand( 

4*A*r*u*v + 4*A*D*(B*v + r*u + r*v - B*u) + 

2*A*4*A*E*(u - v) + 4*A*r*4*A*F) 

 

solution = diop_solve(eq, t) 

 

for s0, t0 in solution: 

 

num = B*t0 + r*s0 + r*t0 - B*s0 

x_0 = S(num)/(4*A*r) 

y_0 = S(s0 - t0)/(2*r) 

if isinstance(s0, Symbol) or isinstance(t0, Symbol): 

if check_param(x_0, y_0, 4*A*r, t) != (None, None): 

ans = check_param(x_0, y_0, 4*A*r, t) 

sol.add((ans[0], ans[1])) 

elif x_0.is_Integer and y_0.is_Integer: 

if is_solution_quad(var, coeff, x_0, y_0): 

sol.add((x_0, y_0)) 

 

else: 

s = _diop_quadratic(var[::-1], coeff, t) # Interchange x and y 

while s: # | 

sol.add(s.pop()[::-1]) # and solution <--------+ 

 

 

# (4) B**2 - 4*A*C > 0 and B**2 - 4*A*C not a square or B**2 - 4*A*C < 0 

 

else: 

 

P, Q = _transformation_to_DN(var, coeff) 

D, N = _find_DN(var, coeff) 

solns_pell = diop_DN(D, N) 

 

if D < 0: 

for x0, y0 in solns_pell: 

for x in [-x0, x0]: 

for y in [-y0, y0]: 

s = P*Matrix([x, y]) + Q 

try: 

sol.add(tuple([as_int(_) for _ in s])) 

except ValueError: 

pass 

else: 

# In this case equation can be transformed into a Pell equation 

 

solns_pell = set(solns_pell) 

for X, Y in list(solns_pell): 

solns_pell.add((-X, -Y)) 

 

a = diop_DN(D, 1) 

T = a[0][0] 

U = a[0][1] 

 

if all(_is_int(_) for _ in P[:4] + Q[:2]): 

for r, s in solns_pell: 

_a = (r + s*sqrt(D))*(T + U*sqrt(D))**t 

_b = (r - s*sqrt(D))*(T - U*sqrt(D))**t 

x_n = _mexpand(S(_a + _b)/2) 

y_n = _mexpand(S(_a - _b)/(2*sqrt(D))) 

s = P*Matrix([x_n, y_n]) + Q 

sol.add(tuple(s)) 

 

else: 

L = ilcm(*[_.q for _ in P[:4] + Q[:2]]) 

 

k = 1 

 

T_k = T 

U_k = U 

 

while (T_k - 1) % L != 0 or U_k % L != 0: 

T_k, U_k = T_k*T + D*U_k*U, T_k*U + U_k*T 

k += 1 

 

for X, Y in solns_pell: 

 

for i in range(k): 

if all(_is_int(_) for _ in P*Matrix([X, Y]) + Q): 

_a = (X + sqrt(D)*Y)*(T_k + sqrt(D)*U_k)**t 

_b = (X - sqrt(D)*Y)*(T_k - sqrt(D)*U_k)**t 

Xt = S(_a + _b)/2 

Yt = S(_a - _b)/(2*sqrt(D)) 

s = P*Matrix([Xt, Yt]) + Q 

sol.add(tuple(s)) 

 

X, Y = X*T + D*U*Y, X*U + Y*T 

 

return sol 

 

 

def is_solution_quad(var, coeff, u, v): 

""" 

Check whether `(u, v)` is solution to the quadratic binary diophantine 

equation with the variable list ``var`` and coefficient dictionary 

``coeff``. 

 

Not intended for use by normal users. 

""" 

reps = dict(zip(var, (u, v))) 

eq = Add(*[j*i.xreplace(reps) for i, j in coeff.items()]) 

return _mexpand(eq) == 0 

 

 

def diop_DN(D, N, t=symbols("t", integer=True)): 

""" 

Solves the equation `x^2 - Dy^2 = N`. 

 

Mainly concerned with the case `D > 0, D` is not a perfect square, 

which is the same as the generalized Pell equation. The LMM 

algorithm [1]_ is used to solve this equation. 

 

Returns one solution tuple, (`x, y)` for each class of the solutions. 

Other solutions of the class can be constructed according to the 

values of ``D`` and ``N``. 

 

Usage 

===== 

 

``diop_DN(D, N, t)``: D and N are integers as in `x^2 - Dy^2 = N` and 

``t`` is the parameter to be used in the solutions. 

 

Details 

======= 

 

``D`` and ``N`` correspond to D and N in the equation. 

``t`` is the parameter to be used in the solutions. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import diop_DN 

>>> diop_DN(13, -4) # Solves equation x**2 - 13*y**2 = -4 

[(3, 1), (393, 109), (36, 10)] 

 

The output can be interpreted as follows: There are three fundamental 

solutions to the equation `x^2 - 13y^2 = -4` given by (3, 1), (393, 109) 

and (36, 10). Each tuple is in the form (x, y), i.e. solution (3, 1) means 

that `x = 3` and `y = 1`. 

 

>>> diop_DN(986, 1) # Solves equation x**2 - 986*y**2 = 1 

[(49299, 1570)] 

 

See Also 

======== 

 

find_DN(), diop_bf_DN() 

 

References 

========== 

 

.. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. 

Robertson, July 31, 2004, Pages 16 - 17. [online], Available: 

http://www.jpr2718.org/pell.pdf 

""" 

if D < 0: 

if N == 0: 

return [(0, 0)] 

elif N < 0: 

return [] 

elif N > 0: 

sol = [] 

for d in divisors(square_factor(N)): 

sols = cornacchia(1, -D, N // d**2) 

if sols: 

for x, y in sols: 

sol.append((d*x, d*y)) 

if D == -1: 

sol.append((d*y, d*x)) 

return sol 

 

elif D == 0: 

if N < 0: 

return [] 

if N == 0: 

return [(0, t)] 

sN, _exact = integer_nthroot(N, 2) 

if _exact: 

return [(sN, t)] 

else: 

return [] 

 

else: # D > 0 

sD, _exact = integer_nthroot(D, 2) 

if _exact: 

if N == 0: 

return [(sD*t, t)] 

else: 

sol = [] 

 

for y in range(floor(sign(N)*(N - 1)/(2*sD)) + 1): 

try: 

sq, _exact = integer_nthroot(D*y**2 + N, 2) 

except ValueError: 

_exact = False 

if _exact: 

sol.append((sq, y)) 

 

return sol 

 

elif 1 < N**2 < D: 

# It is much faster to call `_special_diop_DN`. 

return _special_diop_DN(D, N) 

 

else: 

if N == 0: 

return [(0, 0)] 

 

elif abs(N) == 1: 

 

pqa = PQa(0, 1, D) 

j = 0 

G = [] 

B = [] 

 

for i in pqa: 

 

a = i[2] 

G.append(i[5]) 

B.append(i[4]) 

 

if j != 0 and a == 2*sD: 

break 

j = j + 1 

 

if _odd(j): 

 

if N == -1: 

x = G[j - 1] 

y = B[j - 1] 

else: 

count = j 

while count < 2*j - 1: 

i = next(pqa) 

G.append(i[5]) 

B.append(i[4]) 

count += 1 

 

x = G[count] 

y = B[count] 

else: 

if N == 1: 

x = G[j - 1] 

y = B[j - 1] 

else: 

return [] 

 

return [(x, y)] 

 

else: 

 

fs = [] 

sol = [] 

div = divisors(N) 

 

for d in div: 

if divisible(N, d**2): 

fs.append(d) 

 

for f in fs: 

m = N // f**2 

 

zs = sqrt_mod(D, abs(m), all_roots=True) 

zs = [i for i in zs if i <= abs(m) // 2 ] 

 

if abs(m) != 2: 

zs = zs + [-i for i in zs if i] # omit dupl 0 

 

for z in zs: 

 

pqa = PQa(z, abs(m), D) 

j = 0 

G = [] 

B = [] 

 

for i in pqa: 

 

a = i[2] 

G.append(i[5]) 

B.append(i[4]) 

 

if j != 0 and abs(i[1]) == 1: 

r = G[j-1] 

s = B[j-1] 

 

if r**2 - D*s**2 == m: 

sol.append((f*r, f*s)) 

 

elif diop_DN(D, -1) != []: 

a = diop_DN(D, -1) 

sol.append((f*(r*a[0][0] + a[0][1]*s*D), f*(r*a[0][1] + s*a[0][0]))) 

 

break 

 

j = j + 1 

if j == length(z, abs(m), D): 

break 

 

return sol 

 

 

def _special_diop_DN(D, N): 

""" 

Solves the equation `x^2 - Dy^2 = N` for the special case where 

`1 < N**2 < D` and `D` is not a perfect square. 

It is better to call `diop_DN` rather than this function, as 

the former checks the condition `1 < N**2 < D`, and calls the latter only 

if appropriate. 

 

Usage 

===== 

 

WARNING: Internal method. Do not call directly! 

 

``_special_diop_DN(D, N)``: D and N are integers as in `x^2 - Dy^2 = N`. 

 

Details 

======= 

 

``D`` and ``N`` correspond to D and N in the equation. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import _special_diop_DN 

>>> _special_diop_DN(13, -3) # Solves equation x**2 - 13*y**2 = -3 

[(7, 2), (137, 38)] 

 

The output can be interpreted as follows: There are two fundamental 

solutions to the equation `x^2 - 13y^2 = -3` given by (7, 2) and 

(137, 38). Each tuple is in the form (x, y), i.e. solution (7, 2) means 

that `x = 7` and `y = 2`. 

 

>>> _special_diop_DN(2445, -20) # Solves equation x**2 - 2445*y**2 = -20 

[(445, 9), (17625560, 356454), (698095554475, 14118073569)] 

 

See Also 

======== 

 

diop_DN() 

 

References 

========== 

 

.. [1] Section 4.4.4 of the following book: 

Quadratic Diophantine Equations, T. Andreescu and D. Andrica, 

Springer, 2015. 

""" 

 

# The following assertion was removed for efficiency, with the understanding 

# that this method is not called directly. The parent method, `diop_DN` 

# is responsible for performing the appropriate checks. 

# 

# assert (1 < N**2 < D) and (not integer_nthroot(D, 2)[1]) 

 

sqrt_D = sqrt(D) 

F = [(N, 1)] 

f = 2 

while True: 

f2 = f**2 

if f2 > abs(N): 

break 

n, r = divmod(N, f2) 

if r == 0: 

F.append((n, f)) 

f += 1 

 

P = 0 

Q = 1 

G0, G1 = 0, 1 

B0, B1 = 1, 0 

 

solutions = [] 

 

i = 0 

while True: 

a = floor((P + sqrt_D) / Q) 

P = a*Q - P 

Q = (D - P**2) // Q 

G2 = a*G1 + G0 

B2 = a*B1 + B0 

 

for n, f in F: 

if G2**2 - D*B2**2 == n: 

solutions.append((f*G2, f*B2)) 

 

i += 1 

if Q == 1 and i % 2 == 0: 

break 

 

G0, G1 = G1, G2 

B0, B1 = B1, B2 

 

return solutions 

 

 

def cornacchia(a, b, m): 

r""" 

Solves `ax^2 + by^2 = m` where `\gcd(a, b) = 1 = gcd(a, m)` and `a, b > 0`. 

 

Uses the algorithm due to Cornacchia. The method only finds primitive 

solutions, i.e. ones with `\gcd(x, y) = 1`. So this method can't be used to 

find the solutions of `x^2 + y^2 = 20` since the only solution to former is 

`(x, y) = (4, 2)` and it is not primitive. When `a = b`, only the 

solutions with `x \leq y` are found. For more details, see the References. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import cornacchia 

>>> cornacchia(2, 3, 35) # equation 2x**2 + 3y**2 = 35 

{(2, 3), (4, 1)} 

>>> cornacchia(1, 1, 25) # equation x**2 + y**2 = 25 

{(4, 3)} 

 

References 

=========== 

 

.. [1] A. Nitaj, "L'algorithme de Cornacchia" 

.. [2] Solving the diophantine equation ax**2 + by**2 = m by Cornacchia's 

method, [online], Available: 

http://www.numbertheory.org/php/cornacchia.html 

 

See Also 

======== 

sympy.utilities.iterables.signed_permutations 

""" 

sols = set() 

 

a1 = igcdex(a, m)[0] 

v = sqrt_mod(-b*a1, m, all_roots=True) 

if not v: 

return None 

 

for t in v: 

if t < m // 2: 

continue 

 

u, r = t, m 

 

while True: 

u, r = r, u % r 

if a*r**2 < m: 

break 

 

m1 = m - a*r**2 

 

if m1 % b == 0: 

m1 = m1 // b 

s, _exact = integer_nthroot(m1, 2) 

if _exact: 

if a == b and r < s: 

r, s = s, r 

sols.add((int(r), int(s))) 

 

return sols 

 

 

def PQa(P_0, Q_0, D): 

r""" 

Returns useful information needed to solve the Pell equation. 

 

There are six sequences of integers defined related to the continued 

fraction representation of `\\frac{P + \sqrt{D}}{Q}`, namely {`P_{i}`}, 

{`Q_{i}`}, {`a_{i}`},{`A_{i}`}, {`B_{i}`}, {`G_{i}`}. ``PQa()`` Returns 

these values as a 6-tuple in the same order as mentioned above. Refer [1]_ 

for more detailed information. 

 

Usage 

===== 

 

``PQa(P_0, Q_0, D)``: ``P_0``, ``Q_0`` and ``D`` are integers corresponding 

to `P_{0}`, `Q_{0}` and `D` in the continued fraction 

`\\frac{P_{0} + \sqrt{D}}{Q_{0}}`. 

Also it's assumed that `P_{0}^2 == D mod(|Q_{0}|)` and `D` is square free. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import PQa 

>>> pqa = PQa(13, 4, 5) # (13 + sqrt(5))/4 

>>> next(pqa) # (P_0, Q_0, a_0, A_0, B_0, G_0) 

(13, 4, 3, 3, 1, -1) 

>>> next(pqa) # (P_1, Q_1, a_1, A_1, B_1, G_1) 

(-1, 1, 1, 4, 1, 3) 

 

References 

========== 

 

.. [1] Solving the generalized Pell equation x^2 - Dy^2 = N, John P. 

Robertson, July 31, 2004, Pages 4 - 8. http://www.jpr2718.org/pell.pdf 

""" 

A_i_2 = B_i_1 = 0 

A_i_1 = B_i_2 = 1 

 

G_i_2 = -P_0 

G_i_1 = Q_0 

 

P_i = P_0 

Q_i = Q_0 

 

while(1): 

 

a_i = floor((P_i + sqrt(D))/Q_i) 

A_i = a_i*A_i_1 + A_i_2 

B_i = a_i*B_i_1 + B_i_2 

G_i = a_i*G_i_1 + G_i_2 

 

yield P_i, Q_i, a_i, A_i, B_i, G_i 

 

A_i_1, A_i_2 = A_i, A_i_1 

B_i_1, B_i_2 = B_i, B_i_1 

G_i_1, G_i_2 = G_i, G_i_1 

 

P_i = a_i*Q_i - P_i 

Q_i = (D - P_i**2)/Q_i 

 

 

def diop_bf_DN(D, N, t=symbols("t", integer=True)): 

r""" 

Uses brute force to solve the equation, `x^2 - Dy^2 = N`. 

 

Mainly concerned with the generalized Pell equation which is the case when 

`D > 0, D` is not a perfect square. For more information on the case refer 

[1]_. Let `(t, u)` be the minimal positive solution of the equation 

`x^2 - Dy^2 = 1`. Then this method requires 

`\sqrt{\\frac{\mid N \mid (t \pm 1)}{2D}}` to be small. 

 

Usage 

===== 

 

``diop_bf_DN(D, N, t)``: ``D`` and ``N`` are coefficients in 

`x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions. 

 

Details 

======= 

 

``D`` and ``N`` correspond to D and N in the equation. 

``t`` is the parameter to be used in the solutions. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import diop_bf_DN 

>>> diop_bf_DN(13, -4) 

[(3, 1), (-3, 1), (36, 10)] 

>>> diop_bf_DN(986, 1) 

[(49299, 1570)] 

 

See Also 

======== 

 

diop_DN() 

 

References 

========== 

 

.. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. 

Robertson, July 31, 2004, Page 15. http://www.jpr2718.org/pell.pdf 

""" 

D = as_int(D) 

N = as_int(N) 

 

sol = [] 

a = diop_DN(D, 1) 

u = a[0][0] 

v = a[0][1] 

 

 

if abs(N) == 1: 

return diop_DN(D, N) 

 

elif N > 1: 

L1 = 0 

L2 = integer_nthroot(int(N*(u - 1)/(2*D)), 2)[0] + 1 

 

elif N < -1: 

L1, _exact = integer_nthroot(-int(N/D), 2) 

if not _exact: 

L1 += 1 

L2 = integer_nthroot(-int(N*(u + 1)/(2*D)), 2)[0] + 1 

 

else: # N = 0 

if D < 0: 

return [(0, 0)] 

elif D == 0: 

return [(0, t)] 

else: 

sD, _exact = integer_nthroot(D, 2) 

if _exact: 

return [(sD*t, t), (-sD*t, t)] 

else: 

return [(0, 0)] 

 

 

for y in range(L1, L2): 

try: 

x, _exact = integer_nthroot(N + D*y**2, 2) 

except ValueError: 

_exact = False 

if _exact: 

sol.append((x, y)) 

if not equivalent(x, y, -x, y, D, N): 

sol.append((-x, y)) 

 

return sol 

 

 

def equivalent(u, v, r, s, D, N): 

""" 

Returns True if two solutions `(u, v)` and `(r, s)` of `x^2 - Dy^2 = N` 

belongs to the same equivalence class and False otherwise. 

 

Two solutions `(u, v)` and `(r, s)` to the above equation fall to the same 

equivalence class iff both `(ur - Dvs)` and `(us - vr)` are divisible by 

`N`. See reference [1]_. No test is performed to test whether `(u, v)` and 

`(r, s)` are actually solutions to the equation. User should take care of 

this. 

 

Usage 

===== 

 

``equivalent(u, v, r, s, D, N)``: `(u, v)` and `(r, s)` are two solutions 

of the equation `x^2 - Dy^2 = N` and all parameters involved are integers. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import equivalent 

>>> equivalent(18, 5, -18, -5, 13, -1) 

True 

>>> equivalent(3, 1, -18, 393, 109, -4) 

False 

 

References 

========== 

 

.. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. 

Robertson, July 31, 2004, Page 12. http://www.jpr2718.org/pell.pdf 

 

""" 

return divisible(u*r - D*v*s, N) and divisible(u*s - v*r, N) 

 

 

def length(P, Q, D): 

r""" 

Returns the (length of aperiodic part + length of periodic part) of 

continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`. 

 

It is important to remember that this does NOT return the length of the 

periodic part but the sum of the lengths of the two parts as mentioned 

above. 

 

Usage 

===== 

 

``length(P, Q, D)``: ``P``, ``Q`` and ``D`` are integers corresponding to 

the continued fraction `\\frac{P + \sqrt{D}}{Q}`. 

 

Details 

======= 

 

``P``, ``D`` and ``Q`` corresponds to P, D and Q in the continued fraction, 

`\\frac{P + \sqrt{D}}{Q}`. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import length 

>>> length(-2 , 4, 5) # (-2 + sqrt(5))/4 

3 

>>> length(-5, 4, 17) # (-5 + sqrt(17))/4 

5 

 

See Also 

======== 

sympy.ntheory.continued_fraction.continued_fraction_periodic 

""" 

from sympy.ntheory.continued_fraction import continued_fraction_periodic 

v = continued_fraction_periodic(P, Q, D) 

if type(v[-1]) is list: 

rpt = len(v[-1]) 

nonrpt = len(v) - 1 

else: 

rpt = 0 

nonrpt = len(v) 

return rpt + nonrpt 

 

 

def transformation_to_DN(eq): 

""" 

This function transforms general quadratic, 

`ax^2 + bxy + cy^2 + dx + ey + f = 0` 

to more easy to deal with `X^2 - DY^2 = N` form. 

 

This is used to solve the general quadratic equation by transforming it to 

the latter form. Refer [1]_ for more detailed information on the 

transformation. This function returns a tuple (A, B) where A is a 2 X 2 

matrix and B is a 2 X 1 matrix such that, 

 

Transpose([x y]) = A * Transpose([X Y]) + B 

 

Usage 

===== 

 

``transformation_to_DN(eq)``: where ``eq`` is the quadratic to be 

transformed. 

 

Examples 

======== 

 

>>> from sympy.abc import x, y 

>>> from sympy.solvers.diophantine import transformation_to_DN 

>>> from sympy.solvers.diophantine import classify_diop 

>>> A, B = transformation_to_DN(x**2 - 3*x*y - y**2 - 2*y + 1) 

>>> A 

Matrix([ 

[1/26, 3/26], 

[ 0, 1/13]]) 

>>> B 

Matrix([ 

[-6/13], 

[-4/13]]) 

 

A, B returned are such that Transpose((x y)) = A * Transpose((X Y)) + B. 

Substituting these values for `x` and `y` and a bit of simplifying work 

will give an equation of the form `x^2 - Dy^2 = N`. 

 

>>> from sympy.abc import X, Y 

>>> from sympy import Matrix, simplify 

>>> u = (A*Matrix([X, Y]) + B)[0] # Transformation for x 

>>> u 

X/26 + 3*Y/26 - 6/13 

>>> v = (A*Matrix([X, Y]) + B)[1] # Transformation for y 

>>> v 

Y/13 - 4/13 

 

Next we will substitute these formulas for `x` and `y` and do 

``simplify()``. 

 

>>> eq = simplify((x**2 - 3*x*y - y**2 - 2*y + 1).subs(zip((x, y), (u, v)))) 

>>> eq 

X**2/676 - Y**2/52 + 17/13 

 

By multiplying the denominator appropriately, we can get a Pell equation 

in the standard form. 

 

>>> eq * 676 

X**2 - 13*Y**2 + 884 

 

If only the final equation is needed, ``find_DN()`` can be used. 

 

See Also 

======== 

 

find_DN() 

 

References 

========== 

 

.. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0, 

John P.Robertson, May 8, 2003, Page 7 - 11. 

http://www.jpr2718.org/ax2p.pdf 

""" 

 

var, coeff, diop_type = classify_diop(eq, _dict=False) 

if diop_type == "binary_quadratic": 

return _transformation_to_DN(var, coeff) 

 

 

def _transformation_to_DN(var, coeff): 

 

x, y = var 

 

a = coeff[x**2] 

b = coeff[x*y] 

c = coeff[y**2] 

d = coeff[x] 

e = coeff[y] 

f = coeff[1] 

 

a, b, c, d, e, f = [as_int(i) for i in _remove_gcd(a, b, c, d, e, f)] 

 

X, Y = symbols("X, Y", integer=True) 

 

if b: 

B, C = _rational_pq(2*a, b) 

A, T = _rational_pq(a, B**2) 

 

# eq_1 = A*B*X**2 + B*(c*T - A*C**2)*Y**2 + d*T*X + (B*e*T - d*T*C)*Y + f*T*B 

coeff = {X**2: A*B, X*Y: 0, Y**2: B*(c*T - A*C**2), X: d*T, Y: B*e*T - d*T*C, 1: f*T*B} 

A_0, B_0 = _transformation_to_DN([X, Y], coeff) 

return Matrix(2, 2, [S(1)/B, -S(C)/B, 0, 1])*A_0, Matrix(2, 2, [S(1)/B, -S(C)/B, 0, 1])*B_0 

 

else: 

if d: 

B, C = _rational_pq(2*a, d) 

A, T = _rational_pq(a, B**2) 

 

# eq_2 = A*X**2 + c*T*Y**2 + e*T*Y + f*T - A*C**2 

coeff = {X**2: A, X*Y: 0, Y**2: c*T, X: 0, Y: e*T, 1: f*T - A*C**2} 

A_0, B_0 = _transformation_to_DN([X, Y], coeff) 

return Matrix(2, 2, [S(1)/B, 0, 0, 1])*A_0, Matrix(2, 2, [S(1)/B, 0, 0, 1])*B_0 + Matrix([-S(C)/B, 0]) 

 

else: 

if e: 

B, C = _rational_pq(2*c, e) 

A, T = _rational_pq(c, B**2) 

 

# eq_3 = a*T*X**2 + A*Y**2 + f*T - A*C**2 

coeff = {X**2: a*T, X*Y: 0, Y**2: A, X: 0, Y: 0, 1: f*T - A*C**2} 

A_0, B_0 = _transformation_to_DN([X, Y], coeff) 

return Matrix(2, 2, [1, 0, 0, S(1)/B])*A_0, Matrix(2, 2, [1, 0, 0, S(1)/B])*B_0 + Matrix([0, -S(C)/B]) 

 

else: 

# TODO: pre-simplification: Not necessary but may simplify 

# the equation. 

 

return Matrix(2, 2, [S(1)/a, 0, 0, 1]), Matrix([0, 0]) 

 

 

def find_DN(eq): 

""" 

This function returns a tuple, `(D, N)` of the simplified form, 

`x^2 - Dy^2 = N`, corresponding to the general quadratic, 

`ax^2 + bxy + cy^2 + dx + ey + f = 0`. 

 

Solving the general quadratic is then equivalent to solving the equation 

`X^2 - DY^2 = N` and transforming the solutions by using the transformation 

matrices returned by ``transformation_to_DN()``. 

 

Usage 

===== 

 

``find_DN(eq)``: where ``eq`` is the quadratic to be transformed. 

 

Examples 

======== 

 

>>> from sympy.abc import x, y 

>>> from sympy.solvers.diophantine import find_DN 

>>> find_DN(x**2 - 3*x*y - y**2 - 2*y + 1) 

(13, -884) 

 

Interpretation of the output is that we get `X^2 -13Y^2 = -884` after 

transforming `x^2 - 3xy - y^2 - 2y + 1` using the transformation returned 

by ``transformation_to_DN()``. 

 

See Also 

======== 

 

transformation_to_DN() 

 

References 

========== 

 

.. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0, 

John P.Robertson, May 8, 2003, Page 7 - 11. 

http://www.jpr2718.org/ax2p.pdf 

""" 

var, coeff, diop_type = classify_diop(eq, _dict=False) 

if diop_type == "binary_quadratic": 

return _find_DN(var, coeff) 

 

 

def _find_DN(var, coeff): 

 

x, y = var 

X, Y = symbols("X, Y", integer=True) 

A, B = _transformation_to_DN(var, coeff) 

 

u = (A*Matrix([X, Y]) + B)[0] 

v = (A*Matrix([X, Y]) + B)[1] 

eq = x**2*coeff[x**2] + x*y*coeff[x*y] + y**2*coeff[y**2] + x*coeff[x] + y*coeff[y] + coeff[1] 

 

simplified = _mexpand(eq.subs(zip((x, y), (u, v)))) 

 

coeff = simplified.as_coefficients_dict() 

 

return -coeff[Y**2]/coeff[X**2], -coeff[1]/coeff[X**2] 

 

 

def check_param(x, y, a, t): 

""" 

If there is a number modulo ``a`` such that ``x`` and ``y`` are both 

integers, then return a parametric representation for ``x`` and ``y`` 

else return (None, None). 

 

Here ``x`` and ``y`` are functions of ``t``. 

""" 

from sympy.simplify.simplify import clear_coefficients 

 

if x.is_number and not x.is_Integer: 

return (None, None) 

 

if y.is_number and not y.is_Integer: 

return (None, None) 

 

m, n = symbols("m, n", integer=True) 

c, p = (m*x + n*y).as_content_primitive() 

if a % c.q: 

return (None, None) 

 

# clear_coefficients(mx + b, R)[1] -> (R - b)/m 

eq = clear_coefficients(x, m)[1] - clear_coefficients(y, n)[1] 

junk, eq = eq.as_content_primitive() 

 

return diop_solve(eq, t) 

 

 

def diop_ternary_quadratic(eq): 

""" 

Solves the general quadratic ternary form, 

`ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`. 

 

Returns a tuple `(x, y, z)` which is a base solution for the above 

equation. If there are no solutions, `(None, None, None)` is returned. 

 

Usage 

===== 

 

``diop_ternary_quadratic(eq)``: Return a tuple containing a basic solution 

to ``eq``. 

 

Details 

======= 

 

``eq`` should be an homogeneous expression of degree two in three variables 

and it is assumed to be zero. 

 

Examples 

======== 

 

>>> from sympy.abc import x, y, z 

>>> from sympy.solvers.diophantine import diop_ternary_quadratic 

>>> diop_ternary_quadratic(x**2 + 3*y**2 - z**2) 

(1, 0, 1) 

>>> diop_ternary_quadratic(4*x**2 + 5*y**2 - z**2) 

(1, 0, 2) 

>>> diop_ternary_quadratic(45*x**2 - 7*y**2 - 8*x*y - z**2) 

(28, 45, 105) 

>>> diop_ternary_quadratic(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y) 

(9, 1, 5) 

""" 

var, coeff, diop_type = classify_diop(eq, _dict=False) 

 

if diop_type in ( 

"homogeneous_ternary_quadratic", 

"homogeneous_ternary_quadratic_normal"): 

return _diop_ternary_quadratic(var, coeff) 

 

 

def _diop_ternary_quadratic(_var, coeff): 

 

x, y, z = _var 

var = [x, y, z] 

 

# Equations of the form B*x*y + C*z*x + E*y*z = 0 and At least two of the 

# coefficients A, B, C are non-zero. 

# There are infinitely many solutions for the equation. 

# Ex: (0, 0, t), (0, t, 0), (t, 0, 0) 

# Equation can be re-written as y*(B*x + E*z) = -C*x*z and we can find rather 

# unobvious solutions. Set y = -C and B*x + E*z = x*z. The latter can be solved by 

# using methods for binary quadratic diophantine equations. Let's select the 

# solution which minimizes |x| + |z| 

 

if not any(coeff[i**2] for i in var): 

if coeff[x*z]: 

sols = diophantine(coeff[x*y]*x + coeff[y*z]*z - x*z) 

s = sols.pop() 

min_sum = abs(s[0]) + abs(s[1]) 

 

for r in sols: 

if abs(r[0]) + abs(r[1]) < min_sum: 

s = r 

min_sum = abs(s[0]) + abs(s[1]) 

 

x_0, y_0, z_0 = s[0], -coeff[x*z], s[1] 

 

else: 

var[0], var[1] = _var[1], _var[0] 

y_0, x_0, z_0 = _diop_ternary_quadratic(var, coeff) 

 

return _remove_gcd(x_0, y_0, z_0) 

 

if coeff[x**2] == 0: 

# If the coefficient of x is zero change the variables 

if coeff[y**2] == 0: 

var[0], var[2] = _var[2], _var[0] 

z_0, y_0, x_0 = _diop_ternary_quadratic(var, coeff) 

 

else: 

var[0], var[1] = _var[1], _var[0] 

y_0, x_0, z_0 = _diop_ternary_quadratic(var, coeff) 

 

else: 

if coeff[x*y] or coeff[x*z]: 

# Apply the transformation x --> X - (B*y + C*z)/(2*A) 

A = coeff[x**2] 

B = coeff[x*y] 

C = coeff[x*z] 

D = coeff[y**2] 

E = coeff[y*z] 

F = coeff[z**2] 

 

_coeff = dict() 

 

_coeff[x**2] = 4*A**2 

_coeff[y**2] = 4*A*D - B**2 

_coeff[z**2] = 4*A*F - C**2 

_coeff[y*z] = 4*A*E - 2*B*C 

_coeff[x*y] = 0 

_coeff[x*z] = 0 

 

x_0, y_0, z_0 = _diop_ternary_quadratic(var, _coeff) 

 

if x_0 is None: 

return (None, None, None) 

 

p, q = _rational_pq(B*y_0 + C*z_0, 2*A) 

x_0, y_0, z_0 = x_0*q - p, y_0*q, z_0*q 

 

elif coeff[z*y] != 0: 

if coeff[y**2] == 0: 

if coeff[z**2] == 0: 

# Equations of the form A*x**2 + E*yz = 0. 

A = coeff[x**2] 

E = coeff[y*z] 

 

b, a = _rational_pq(-E, A) 

 

x_0, y_0, z_0 = b, a, b 

 

else: 

# Ax**2 + E*y*z + F*z**2 = 0 

var[0], var[2] = _var[2], _var[0] 

z_0, y_0, x_0 = _diop_ternary_quadratic(var, coeff) 

 

else: 

# A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, C may be zero 

var[0], var[1] = _var[1], _var[0] 

y_0, x_0, z_0 = _diop_ternary_quadratic(var, coeff) 

 

else: 

# Ax**2 + D*y**2 + F*z**2 = 0, C may be zero 

x_0, y_0, z_0 = _diop_ternary_quadratic_normal(var, coeff) 

 

return _remove_gcd(x_0, y_0, z_0) 

 

 

def transformation_to_normal(eq): 

""" 

Returns the transformation Matrix that converts a general ternary 

quadratic equation `eq` (`ax^2 + by^2 + cz^2 + dxy + eyz + fxz`) 

to a form without cross terms: `ax^2 + by^2 + cz^2 = 0`. This is 

not used in solving ternary quadratics; it is only implemented for 

the sake of completeness. 

""" 

var, coeff, diop_type = classify_diop(eq, _dict=False) 

 

if diop_type in ( 

"homogeneous_ternary_quadratic", 

"homogeneous_ternary_quadratic_normal"): 

return _transformation_to_normal(var, coeff) 

 

 

def _transformation_to_normal(var, coeff): 

 

_var = list(var) # copy 

x, y, z = var 

 

if not any(coeff[i**2] for i in var): 

# https://math.stackexchange.com/questions/448051/transform-quadratic-ternary-form-to-normal-form/448065#448065 

a = coeff[x*y] 

b = coeff[y*z] 

c = coeff[x*z] 

swap = False 

if not a: # b can't be 0 or else there aren't 3 vars 

swap = True 

a, b = b, a 

T = Matrix(((1, 1, -b/a), (1, -1, -c/a), (0, 0, 1))) 

if swap: 

T.row_swap(0, 1) 

T.col_swap(0, 1) 

return T 

 

if coeff[x**2] == 0: 

# If the coefficient of x is zero change the variables 

if coeff[y**2] == 0: 

_var[0], _var[2] = var[2], var[0] 

T = _transformation_to_normal(_var, coeff) 

T.row_swap(0, 2) 

T.col_swap(0, 2) 

return T 

 

else: 

_var[0], _var[1] = var[1], var[0] 

T = _transformation_to_normal(_var, coeff) 

T.row_swap(0, 1) 

T.col_swap(0, 1) 

return T 

 

# Apply the transformation x --> X - (B*Y + C*Z)/(2*A) 

if coeff[x*y] != 0 or coeff[x*z] != 0: 

A = coeff[x**2] 

B = coeff[x*y] 

C = coeff[x*z] 

D = coeff[y**2] 

E = coeff[y*z] 

F = coeff[z**2] 

 

_coeff = dict() 

 

_coeff[x**2] = 4*A**2 

_coeff[y**2] = 4*A*D - B**2 

_coeff[z**2] = 4*A*F - C**2 

_coeff[y*z] = 4*A*E - 2*B*C 

_coeff[x*y] = 0 

_coeff[x*z] = 0 

 

T_0 = _transformation_to_normal(_var, _coeff) 

return Matrix(3, 3, [1, S(-B)/(2*A), S(-C)/(2*A), 0, 1, 0, 0, 0, 1])*T_0 

 

elif coeff[y*z] != 0: 

if coeff[y**2] == 0: 

if coeff[z**2] == 0: 

# Equations of the form A*x**2 + E*yz = 0. 

# Apply transformation y -> Y + Z ans z -> Y - Z 

return Matrix(3, 3, [1, 0, 0, 0, 1, 1, 0, 1, -1]) 

 

else: 

# Ax**2 + E*y*z + F*z**2 = 0 

_var[0], _var[2] = var[2], var[0] 

T = _transformation_to_normal(_var, coeff) 

T.row_swap(0, 2) 

T.col_swap(0, 2) 

return T 

 

else: 

# A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, F may be zero 

_var[0], _var[1] = var[1], var[0] 

T = _transformation_to_normal(_var, coeff) 

T.row_swap(0, 1) 

T.col_swap(0, 1) 

return T 

 

else: 

return Matrix.eye(3) 

 

 

def parametrize_ternary_quadratic(eq): 

""" 

Returns the parametrized general solution for the ternary quadratic 

equation ``eq`` which has the form 

`ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`. 

 

Examples 

======== 

 

>>> from sympy.abc import x, y, z 

>>> from sympy.solvers.diophantine import parametrize_ternary_quadratic 

>>> parametrize_ternary_quadratic(x**2 + y**2 - z**2) 

(2*p*q, p**2 - q**2, p**2 + q**2) 

 

Here `p` and `q` are two co-prime integers. 

 

>>> parametrize_ternary_quadratic(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) 

(2*p**2 - 2*p*q - q**2, 2*p**2 + 2*p*q - q**2, 2*p**2 - 2*p*q + 3*q**2) 

>>> parametrize_ternary_quadratic(124*x**2 - 30*y**2 - 7729*z**2) 

(-1410*p**2 - 363263*q**2, 2700*p**2 + 30916*p*q - 695610*q**2, -60*p**2 + 5400*p*q + 15458*q**2) 

 

References 

========== 

 

.. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart, 

London Mathematical Society Student Texts 41, Cambridge University 

Press, Cambridge, 1998. 

 

""" 

var, coeff, diop_type = classify_diop(eq, _dict=False) 

 

if diop_type in ( 

"homogeneous_ternary_quadratic", 

"homogeneous_ternary_quadratic_normal"): 

x_0, y_0, z_0 = _diop_ternary_quadratic(var, coeff) 

return _parametrize_ternary_quadratic( 

(x_0, y_0, z_0), var, coeff) 

 

 

def _parametrize_ternary_quadratic(solution, _var, coeff): 

# called for a*x**2 + b*y**2 + c*z**2 + d*x*y + e*y*z + f*x*z = 0 

assert 1 not in coeff 

 

x, y, z = _var 

 

x_0, y_0, z_0 = solution 

 

v = list(_var) # copy 

 

if x_0 is None: 

return (None, None, None) 

 

if solution.count(0) >= 2: 

# if there are 2 zeros the equation reduces 

# to k*X**2 == 0 where X is x, y, or z so X must 

# be zero, too. So there is only the trivial 

# solution. 

return (None, None, None) 

 

if x_0 == 0: 

v[0], v[1] = v[1], v[0] 

y_p, x_p, z_p = _parametrize_ternary_quadratic( 

(y_0, x_0, z_0), v, coeff) 

return x_p, y_p, z_p 

 

x, y, z = v 

r, p, q = symbols("r, p, q", integer=True) 

 

eq = sum(k*v for k, v in coeff.items()) 

eq_1 = _mexpand(eq.subs(zip( 

(x, y, z), (r*x_0, r*y_0 + p, r*z_0 + q)))) 

A, B = eq_1.as_independent(r, as_Add=True) 

 

 

x = A*x_0 

y = (A*y_0 - _mexpand(B/r*p)) 

z = (A*z_0 - _mexpand(B/r*q)) 

 

return x, y, z 

 

 

def diop_ternary_quadratic_normal(eq): 

""" 

Solves the quadratic ternary diophantine equation, 

`ax^2 + by^2 + cz^2 = 0`. 

 

Here the coefficients `a`, `b`, and `c` should be non zero. Otherwise the 

equation will be a quadratic binary or univariate equation. If solvable, 

returns a tuple `(x, y, z)` that satisfies the given equation. If the 

equation does not have integer solutions, `(None, None, None)` is returned. 

 

Usage 

===== 

 

``diop_ternary_quadratic_normal(eq)``: where ``eq`` is an equation of the form 

`ax^2 + by^2 + cz^2 = 0`. 

 

Examples 

======== 

 

>>> from sympy.abc import x, y, z 

>>> from sympy.solvers.diophantine import diop_ternary_quadratic_normal 

>>> diop_ternary_quadratic_normal(x**2 + 3*y**2 - z**2) 

(1, 0, 1) 

>>> diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) 

(1, 0, 2) 

>>> diop_ternary_quadratic_normal(34*x**2 - 3*y**2 - 301*z**2) 

(4, 9, 1) 

""" 

var, coeff, diop_type = classify_diop(eq, _dict=False) 

if diop_type == "homogeneous_ternary_quadratic_normal": 

return _diop_ternary_quadratic_normal(var, coeff) 

 

 

def _diop_ternary_quadratic_normal(var, coeff): 

 

x, y, z = var 

 

a = coeff[x**2] 

b = coeff[y**2] 

c = coeff[z**2] 

try: 

assert len([k for k in coeff if coeff[k]]) == 3 

assert all(coeff[i**2] for i in var) 

except AssertionError: 

raise ValueError(filldedent(''' 

coeff dict is not consistent with assumption of this routine: 

coefficients should be those of an expression in the form 

a*x**2 + b*y**2 + c*z**2 where a*b*c != 0.''')) 

 

(sqf_of_a, sqf_of_b, sqf_of_c), (a_1, b_1, c_1), (a_2, b_2, c_2) = \ 

sqf_normal(a, b, c, steps=True) 

 

A = -a_2*c_2 

B = -b_2*c_2 

 

# If following two conditions are satisfied then there are no solutions 

if A < 0 and B < 0: 

return (None, None, None) 

 

if ( 

sqrt_mod(-b_2*c_2, a_2) is None or 

sqrt_mod(-c_2*a_2, b_2) is None or 

sqrt_mod(-a_2*b_2, c_2) is None): 

return (None, None, None) 

 

z_0, x_0, y_0 = descent(A, B) 

 

z_0, q = _rational_pq(z_0, abs(c_2)) 

x_0 *= q 

y_0 *= q 

 

x_0, y_0, z_0 = _remove_gcd(x_0, y_0, z_0) 

 

# Holzer reduction 

if sign(a) == sign(b): 

x_0, y_0, z_0 = holzer(x_0, y_0, z_0, abs(a_2), abs(b_2), abs(c_2)) 

elif sign(a) == sign(c): 

x_0, z_0, y_0 = holzer(x_0, z_0, y_0, abs(a_2), abs(c_2), abs(b_2)) 

else: 

y_0, z_0, x_0 = holzer(y_0, z_0, x_0, abs(b_2), abs(c_2), abs(a_2)) 

 

x_0 = reconstruct(b_1, c_1, x_0) 

y_0 = reconstruct(a_1, c_1, y_0) 

z_0 = reconstruct(a_1, b_1, z_0) 

 

sq_lcm = ilcm(sqf_of_a, sqf_of_b, sqf_of_c) 

 

x_0 = abs(x_0*sq_lcm//sqf_of_a) 

y_0 = abs(y_0*sq_lcm//sqf_of_b) 

z_0 = abs(z_0*sq_lcm//sqf_of_c) 

 

return _remove_gcd(x_0, y_0, z_0) 

 

 

def sqf_normal(a, b, c, steps=False): 

""" 

Return `a', b', c'`, the coefficients of the square-free normal 

form of `ax^2 + by^2 + cz^2 = 0`, where `a', b', c'` are pairwise 

prime. If `steps` is True then also return three tuples: 

`sq`, `sqf`, and `(a', b', c')` where `sq` contains the square 

factors of `a`, `b` and `c` after removing the `gcd(a, b, c)`; 

`sqf` contains the values of `a`, `b` and `c` after removing 

both the `gcd(a, b, c)` and the square factors. 

 

The solutions for `ax^2 + by^2 + cz^2 = 0` can be 

recovered from the solutions of `a'x^2 + b'y^2 + c'z^2 = 0`. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import sqf_normal 

>>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11) 

(11, 1, 5) 

>>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11, True) 

((3, 1, 7), (5, 55, 11), (11, 1, 5)) 

 

References 

========== 

 

.. [1] Legendre's Theorem, Legrange's Descent, 

http://public.csusm.edu/aitken_html/notes/legendre.pdf 

 

 

See Also 

======== 

 

reconstruct() 

""" 

ABC = A, B, C = _remove_gcd(a, b, c) 

sq = tuple(square_factor(i) for i in ABC) 

sqf = A, B, C = tuple([i//j**2 for i,j in zip(ABC, sq)]) 

pc = igcd(A, B) 

A /= pc 

B /= pc 

pa = igcd(B, C) 

B /= pa 

C /= pa 

pb = igcd(A, C) 

A /= pb 

B /= pb 

 

A *= pa 

B *= pb 

C *= pc 

 

if steps: 

return (sq, sqf, (A, B, C)) 

else: 

return A, B, C 

 

 

def square_factor(a): 

r""" 

Returns an integer `c` s.t. `a = c^2k, \ c,k \in Z`. Here `k` is square 

free. `a` can be given as an integer or a dictionary of factors. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import square_factor 

>>> square_factor(24) 

2 

>>> square_factor(-36*3) 

6 

>>> square_factor(1) 

1 

>>> square_factor({3: 2, 2: 1, -1: 1}) # -18 

3 

 

See Also 

======== 

sympy.ntheory.factor_.core 

""" 

f = a if isinstance(a, dict) else factorint(a) 

return Mul(*[p**(e//2) for p, e in f.items()]) 

 

 

def reconstruct(A, B, z): 

""" 

Reconstruct the `z` value of an equivalent solution of `ax^2 + by^2 + cz^2` 

from the `z` value of a solution of the square-free normal form of the 

equation, `a'*x^2 + b'*y^2 + c'*z^2`, where `a'`, `b'` and `c'` are square 

free and `gcd(a', b', c') == 1`. 

""" 

f = factorint(igcd(A, B)) 

for p, e in f.items(): 

if e != 1: 

raise ValueError('a and b should be square-free') 

z *= p 

return z 

 

 

def ldescent(A, B): 

""" 

Return a non-trivial solution to `w^2 = Ax^2 + By^2` using 

Lagrange's method; return None if there is no such solution. 

. 

 

Here, `A \\neq 0` and `B \\neq 0` and `A` and `B` are square free. Output a 

tuple `(w_0, x_0, y_0)` which is a solution to the above equation. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import ldescent 

>>> ldescent(1, 1) # w^2 = x^2 + y^2 

(1, 1, 0) 

>>> ldescent(4, -7) # w^2 = 4x^2 - 7y^2 

(2, -1, 0) 

 

This means that `x = -1, y = 0` and `w = 2` is a solution to the equation 

`w^2 = 4x^2 - 7y^2` 

 

>>> ldescent(5, -1) # w^2 = 5x^2 - y^2 

(2, 1, -1) 

 

References 

========== 

 

.. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart, 

London Mathematical Society Student Texts 41, Cambridge University 

Press, Cambridge, 1998. 

.. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, 

[online], Available: 

http://eprints.nottingham.ac.uk/60/1/kvxefz87.pdf 

""" 

if abs(A) > abs(B): 

w, y, x = ldescent(B, A) 

return w, x, y 

 

if A == 1: 

return (1, 1, 0) 

 

if B == 1: 

return (1, 0, 1) 

 

if B == -1: # and A == -1 

return 

 

r = sqrt_mod(A, B) 

 

Q = (r**2 - A) // B 

 

if Q == 0: 

B_0 = 1 

d = 0 

else: 

div = divisors(Q) 

B_0 = None 

 

for i in div: 

sQ, _exact = integer_nthroot(abs(Q) // i, 2) 

if _exact: 

B_0, d = sign(Q)*i, sQ 

break 

 

if B_0 is not None: 

W, X, Y = ldescent(A, B_0) 

return _remove_gcd((-A*X + r*W), (r*X - W), Y*(B_0*d)) 

 

 

def descent(A, B): 

""" 

Returns a non-trivial solution, (x, y, z), to `x^2 = Ay^2 + Bz^2` 

using Lagrange's descent method with lattice-reduction. `A` and `B` 

are assumed to be valid for such a solution to exist. 

 

This is faster than the normal Lagrange's descent algorithm because 

the Gaussian reduction is used. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import descent 

>>> descent(3, 1) # x**2 = 3*y**2 + z**2 

(1, 0, 1) 

 

`(x, y, z) = (1, 0, 1)` is a solution to the above equation. 

 

>>> descent(41, -113) 

(-16, -3, 1) 

 

References 

========== 

 

.. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, 

Mathematics of Computation, Volume 00, Number 0. 

""" 

if abs(A) > abs(B): 

x, y, z = descent(B, A) 

return x, z, y 

 

if B == 1: 

return (1, 0, 1) 

if A == 1: 

return (1, 1, 0) 

if B == -A: 

return (0, 1, 1) 

if B == A: 

x, z, y = descent(-1, A) 

return (A*y, z, x) 

 

w = sqrt_mod(A, B) 

x_0, z_0 = gaussian_reduce(w, A, B) 

 

t = (x_0**2 - A*z_0**2) // B 

t_2 = square_factor(t) 

t_1 = t // t_2**2 

 

x_1, z_1, y_1 = descent(A, t_1) 

 

return _remove_gcd(x_0*x_1 + A*z_0*z_1, z_0*x_1 + x_0*z_1, t_1*t_2*y_1) 

 

 

def gaussian_reduce(w, a, b): 

r""" 

Returns a reduced solution `(x, z)` to the congruence 

`X^2 - aZ^2 \equiv 0 \ (mod \ b)` so that `x^2 + |a|z^2` is minimal. 

 

Details 

======= 

 

Here ``w`` is a solution of the congruence `x^2 \equiv a \ (mod \ b)` 

 

References 

========== 

 

.. [1] Gaussian lattice Reduction [online]. Available: 

http://home.ie.cuhk.edu.hk/~wkshum/wordpress/?p=404 

.. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, 

Mathematics of Computation, Volume 00, Number 0. 

""" 

u = (0, 1) 

v = (1, 0) 

 

if dot(u, v, w, a, b) < 0: 

v = (-v[0], -v[1]) 

 

if norm(u, w, a, b) < norm(v, w, a, b): 

u, v = v, u 

 

while norm(u, w, a, b) > norm(v, w, a, b): 

k = dot(u, v, w, a, b) // dot(v, v, w, a, b) 

u, v = v, (u[0]- k*v[0], u[1]- k*v[1]) 

 

u, v = v, u 

 

if dot(u, v, w, a, b) < dot(v, v, w, a, b)/2 or norm((u[0]-v[0], u[1]-v[1]), w, a, b) > norm(v, w, a, b): 

c = v 

else: 

c = (u[0] - v[0], u[1] - v[1]) 

 

return c[0]*w + b*c[1], c[0] 

 

 

def dot(u, v, w, a, b): 

r""" 

Returns a special dot product of the vectors `u = (u_{1}, u_{2})` and 

`v = (v_{1}, v_{2})` which is defined in order to reduce solution of 

the congruence equation `X^2 - aZ^2 \equiv 0 \ (mod \ b)`. 

""" 

u_1, u_2 = u 

v_1, v_2 = v 

return (w*u_1 + b*u_2)*(w*v_1 + b*v_2) + abs(a)*u_1*v_1 

 

 

def norm(u, w, a, b): 

r""" 

Returns the norm of the vector `u = (u_{1}, u_{2})` under the dot product 

defined by `u \cdot v = (wu_{1} + bu_{2})(w*v_{1} + bv_{2}) + |a|*u_{1}*v_{1}` 

where `u = (u_{1}, u_{2})` and `v = (v_{1}, v_{2})`. 

""" 

u_1, u_2 = u 

return sqrt(dot((u_1, u_2), (u_1, u_2), w, a, b)) 

 

 

def holzer(x, y, z, a, b, c): 

r""" 

Simplify the solution `(x, y, z)` of the equation 

`ax^2 + by^2 = cz^2` with `a, b, c > 0` and `z^2 \geq \mid ab \mid` to 

a new reduced solution `(x', y', z')` such that `z'^2 \leq \mid ab \mid`. 

 

The algorithm is an interpretation of Mordell's reduction as described 

on page 8 of Cremona and Rusin's paper [1]_ and the work of Mordell in 

reference [2]_. 

 

References 

========== 

 

.. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, 

Mathematics of Computation, Volume 00, Number 0. 

.. [2] Diophantine Equations, L. J. Mordell, page 48. 

 

""" 

 

if _odd(c): 

k = 2*c 

else: 

k = c//2 

 

small = a*b*c 

step = 0 

while True: 

t1, t2, t3 = a*x**2, b*y**2, c*z**2 

# check that it's a solution 

if t1 + t2 != t3: 

if step == 0: 

raise ValueError('bad starting solution') 

break 

x_0, y_0, z_0 = x, y, z 

if max(t1, t2, t3) <= small: 

# Holzer condition 

break 

 

uv = u, v = base_solution_linear(k, y_0, -x_0) 

if None in uv: 

break 

 

p, q = -(a*u*x_0 + b*v*y_0), c*z_0 

r = Rational(p, q) 

if _even(c): 

w = _nint_or_floor(p, q) 

assert abs(w - r) <= S.Half 

else: 

w = p//q # floor 

if _odd(a*u + b*v + c*w): 

w += 1 

assert abs(w - r) <= S.One 

 

A = (a*u**2 + b*v**2 + c*w**2) 

B = (a*u*x_0 + b*v*y_0 + c*w*z_0) 

x = Rational(x_0*A - 2*u*B, k) 

y = Rational(y_0*A - 2*v*B, k) 

z = Rational(z_0*A - 2*w*B, k) 

assert all(i.is_Integer for i in (x, y, z)) 

step += 1 

 

return tuple([int(i) for i in (x_0, y_0, z_0)]) 

 

 

def diop_general_pythagorean(eq, param=symbols("m", integer=True)): 

""" 

Solves the general pythagorean equation, 

`a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`. 

 

Returns a tuple which contains a parametrized solution to the equation, 

sorted in the same order as the input variables. 

 

Usage 

===== 

 

``diop_general_pythagorean(eq, param)``: where ``eq`` is a general 

pythagorean equation which is assumed to be zero and ``param`` is the base 

parameter used to construct other parameters by subscripting. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import diop_general_pythagorean 

>>> from sympy.abc import a, b, c, d, e 

>>> diop_general_pythagorean(a**2 + b**2 + c**2 - d**2) 

(m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2) 

>>> diop_general_pythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2) 

(10*m1**2 + 10*m2**2 + 10*m3**2 - 10*m4**2, 15*m1**2 + 15*m2**2 + 15*m3**2 + 15*m4**2, 15*m1*m4, 12*m2*m4, 60*m3*m4) 

""" 

var, coeff, diop_type = classify_diop(eq, _dict=False) 

 

if diop_type == "general_pythagorean": 

return _diop_general_pythagorean(var, coeff, param) 

 

 

def _diop_general_pythagorean(var, coeff, t): 

 

if sign(coeff[var[0]**2]) + sign(coeff[var[1]**2]) + sign(coeff[var[2]**2]) < 0: 

for key in coeff.keys(): 

coeff[key] = -coeff[key] 

 

n = len(var) 

index = 0 

 

for i, v in enumerate(var): 

if sign(coeff[v**2]) == -1: 

index = i 

 

m = symbols('%s1:%i' % (t, n), integer=True) 

ith = sum(m_i**2 for m_i in m) 

L = [ith - 2*m[n - 2]**2] 

L.extend([2*m[i]*m[n-2] for i in range(n - 2)]) 

sol = L[:index] + [ith] + L[index:] 

 

lcm = 1 

for i, v in enumerate(var): 

if i == index or (index > 0 and i == 0) or (index == 0 and i == 1): 

lcm = ilcm(lcm, sqrt(abs(coeff[v**2]))) 

else: 

s = sqrt(coeff[v**2]) 

lcm = ilcm(lcm, s if _odd(s) else s//2) 

 

for i, v in enumerate(var): 

sol[i] = (lcm*sol[i]) / sqrt(abs(coeff[v**2])) 

 

return tuple(sol) 

 

 

def diop_general_sum_of_squares(eq, limit=1): 

r""" 

Solves the equation `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`. 

 

Returns at most ``limit`` number of solutions. 

 

Usage 

===== 

 

``general_sum_of_squares(eq, limit)`` : Here ``eq`` is an expression which 

is assumed to be zero. Also, ``eq`` should be in the form, 

`x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`. 

 

Details 

======= 

 

When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be 

no solutions. Refer [1]_ for more details. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import diop_general_sum_of_squares 

>>> from sympy.abc import a, b, c, d, e, f 

>>> diop_general_sum_of_squares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345) 

{(15, 22, 22, 24, 24)} 

 

Reference 

========= 

 

.. [1] Representing an integer as a sum of three squares, [online], 

Available: 

http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares 

""" 

var, coeff, diop_type = classify_diop(eq, _dict=False) 

 

if diop_type == "general_sum_of_squares": 

return _diop_general_sum_of_squares(var, -coeff[1], limit) 

 

 

def _diop_general_sum_of_squares(var, k, limit=1): 

# solves Eq(sum(i**2 for i in var), k) 

n = len(var) 

if n < 3: 

raise ValueError('n must be greater than 2') 

 

s = set() 

 

if k < 0 or limit < 1: 

return s 

 

sign = [-1 if x.is_nonpositive else 1 for x in var] 

negs = sign.count(-1) != 0 

 

took = 0 

for t in sum_of_squares(k, n, zeros=True): 

if negs: 

s.add(tuple([sign[i]*j for i, j in enumerate(t)])) 

else: 

s.add(t) 

took += 1 

if took == limit: 

break 

return s 

 

 

def diop_general_sum_of_even_powers(eq, limit=1): 

""" 

Solves the equation `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0` 

where `e` is an even, integer power. 

 

Returns at most ``limit`` number of solutions. 

 

Usage 

===== 

 

``general_sum_of_even_powers(eq, limit)`` : Here ``eq`` is an expression which 

is assumed to be zero. Also, ``eq`` should be in the form, 

`x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import diop_general_sum_of_even_powers 

>>> from sympy.abc import a, b 

>>> diop_general_sum_of_even_powers(a**4 + b**4 - (2**4 + 3**4)) 

{(2, 3)} 

 

See Also 

======== 

power_representation() 

""" 

var, coeff, diop_type = classify_diop(eq, _dict=False) 

 

if diop_type == "general_sum_of_even_powers": 

for k in coeff.keys(): 

if k.is_Pow and coeff[k]: 

p = k.exp 

return _diop_general_sum_of_even_powers(var, p, -coeff[1], limit) 

 

 

def _diop_general_sum_of_even_powers(var, p, n, limit=1): 

# solves Eq(sum(i**2 for i in var), n) 

k = len(var) 

 

s = set() 

 

if n < 0 or limit < 1: 

return s 

 

sign = [-1 if x.is_nonpositive else 1 for x in var] 

negs = sign.count(-1) != 0 

 

took = 0 

for t in power_representation(n, p, k): 

if negs: 

s.add(tuple([sign[i]*j for i, j in enumerate(t)])) 

else: 

s.add(t) 

took += 1 

if took == limit: 

break 

return s 

 

 

## Functions below this comment can be more suitably grouped under 

## an Additive number theory module rather than the Diophantine 

## equation module. 

 

 

def partition(n, k=None, zeros=False): 

""" 

Returns a generator that can be used to generate partitions of an integer 

`n`. 

 

A partition of `n` is a set of positive integers which add up to `n`. For 

example, partitions of 3 are 3, 1 + 2, 1 + 1 + 1. A partition is returned 

as a tuple. If ``k`` equals None, then all possible partitions are returned 

irrespective of their size, otherwise only the partitions of size ``k`` are 

returned. If the ``zero`` parameter is set to True then a suitable 

number of zeros are added at the end of every partition of size less than 

``k``. 

 

``zero`` parameter is considered only if ``k`` is not None. When the 

partitions are over, the last `next()` call throws the ``StopIteration`` 

exception, so this function should always be used inside a try - except 

block. 

 

Details 

======= 

 

``partition(n, k)``: Here ``n`` is a positive integer and ``k`` is the size 

of the partition which is also positive integer. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import partition 

>>> f = partition(5) 

>>> next(f) 

(1, 1, 1, 1, 1) 

>>> next(f) 

(1, 1, 1, 2) 

>>> g = partition(5, 3) 

>>> next(g) 

(1, 1, 3) 

>>> next(g) 

(1, 2, 2) 

>>> g = partition(5, 3, zeros=True) 

>>> next(g) 

(0, 0, 5) 

 

""" 

from sympy.utilities.iterables import ordered_partitions 

if not zeros or k is None: 

for i in ordered_partitions(n, k): 

yield tuple(i) 

else: 

for m in range(1, k + 1): 

for i in ordered_partitions(n, m): 

i = tuple(i) 

yield (0,)*(k - len(i)) + i 

 

 

def prime_as_sum_of_two_squares(p): 

""" 

Represent a prime `p` as a unique sum of two squares; this can 

only be done if the prime is congruent to 1 mod 4. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import prime_as_sum_of_two_squares 

>>> prime_as_sum_of_two_squares(7) # can't be done 

>>> prime_as_sum_of_two_squares(5) 

(1, 2) 

 

Reference 

========= 

 

.. [1] Representing a number as a sum of four squares, [online], 

Available: http://schorn.ch/lagrange.html 

 

See Also 

======== 

sum_of_squares() 

""" 

if not p % 4 == 1: 

return 

 

if p % 8 == 5: 

b = 2 

else: 

b = 3 

 

while pow(b, (p - 1) // 2, p) == 1: 

b = nextprime(b) 

 

b = pow(b, (p - 1) // 4, p) 

a = p 

 

while b**2 > p: 

a, b = b, a % b 

 

return (int(a % b), int(b)) # convert from long 

 

 

def sum_of_three_squares(n): 

r""" 

Returns a 3-tuple `(a, b, c)` such that `a^2 + b^2 + c^2 = n` and 

`a, b, c \geq 0`. 

 

Returns None if `n = 4^a(8m + 7)` for some `a, m \in Z`. See 

[1]_ for more details. 

 

Usage 

===== 

 

``sum_of_three_squares(n)``: Here ``n`` is a non-negative integer. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import sum_of_three_squares 

>>> sum_of_three_squares(44542) 

(18, 37, 207) 

 

References 

========== 

 

.. [1] Representing a number as a sum of three squares, [online], 

Available: http://schorn.ch/lagrange.html 

 

See Also 

======== 

sum_of_squares() 

""" 

special = {1:(1, 0, 0), 2:(1, 1, 0), 3:(1, 1, 1), 10: (1, 3, 0), 34: (3, 3, 4), 58:(3, 7, 0), 

85:(6, 7, 0), 130:(3, 11, 0), 214:(3, 6, 13), 226:(8, 9, 9), 370:(8, 9, 15), 

526:(6, 7, 21), 706:(15, 15, 16), 730:(1, 27, 0), 1414:(6, 17, 33), 1906:(13, 21, 36), 

2986: (21, 32, 39), 9634: (56, 57, 57)} 

 

v = 0 

 

if n == 0: 

return (0, 0, 0) 

 

v = multiplicity(4, n) 

n //= 4**v 

 

if n % 8 == 7: 

return 

 

if n in special.keys(): 

x, y, z = special[n] 

return _sorted_tuple(2**v*x, 2**v*y, 2**v*z) 

 

s, _exact = integer_nthroot(n, 2) 

 

if _exact: 

return (2**v*s, 0, 0) 

 

x = None 

 

if n % 8 == 3: 

s = s if _odd(s) else s - 1 

 

for x in range(s, -1, -2): 

N = (n - x**2) // 2 

if isprime(N): 

y, z = prime_as_sum_of_two_squares(N) 

return _sorted_tuple(2**v*x, 2**v*(y + z), 2**v*abs(y - z)) 

return 

 

if n % 8 == 2 or n % 8 == 6: 

s = s if _odd(s) else s - 1 

else: 

s = s - 1 if _odd(s) else s 

 

for x in range(s, -1, -2): 

N = n - x**2 

if isprime(N): 

y, z = prime_as_sum_of_two_squares(N) 

return _sorted_tuple(2**v*x, 2**v*y, 2**v*z) 

 

 

def sum_of_four_squares(n): 

r""" 

Returns a 4-tuple `(a, b, c, d)` such that `a^2 + b^2 + c^2 + d^2 = n`. 

 

Here `a, b, c, d \geq 0`. 

 

Usage 

===== 

 

``sum_of_four_squares(n)``: Here ``n`` is a non-negative integer. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import sum_of_four_squares 

>>> sum_of_four_squares(3456) 

(8, 8, 32, 48) 

>>> sum_of_four_squares(1294585930293) 

(0, 1234, 2161, 1137796) 

 

References 

========== 

 

.. [1] Representing a number as a sum of four squares, [online], 

Available: http://schorn.ch/lagrange.html 

 

See Also 

======== 

sum_of_squares() 

""" 

if n == 0: 

return (0, 0, 0, 0) 

 

v = multiplicity(4, n) 

n //= 4**v 

 

if n % 8 == 7: 

d = 2 

n = n - 4 

elif n % 8 == 6 or n % 8 == 2: 

d = 1 

n = n - 1 

else: 

d = 0 

 

x, y, z = sum_of_three_squares(n) 

 

return _sorted_tuple(2**v*d, 2**v*x, 2**v*y, 2**v*z) 

 

 

def power_representation(n, p, k, zeros=False): 

""" 

Returns a generator for finding k-tuples of integers, 

`(n_{1}, n_{2}, . . . n_{k})`, such that 

`n = n_{1}^p + n_{2}^p + . . . n_{k}^p`. 

 

Usage 

===== 

 

``power_representation(n, p, k, zeros)``: Represent non-negative number 

``n`` as a sum of ``k`` ``p``th powers. If ``zeros`` is true, then the 

solutions is allowed to contain zeros. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import power_representation 

 

Represent 1729 as a sum of two cubes: 

 

>>> f = power_representation(1729, 3, 2) 

>>> next(f) 

(9, 10) 

>>> next(f) 

(1, 12) 

 

If the flag `zeros` is True, the solution may contain tuples with 

zeros; any such solutions will be generated after the solutions 

without zeros: 

 

>>> list(power_representation(125, 2, 3, zeros=True)) 

[(5, 6, 8), (3, 4, 10), (0, 5, 10), (0, 2, 11)] 

 

For even `p` the `permute_sign` function can be used to get all 

signed values: 

 

>>> from sympy.utilities.iterables import permute_signs 

>>> list(permute_signs((1, 12))) 

[(1, 12), (-1, 12), (1, -12), (-1, -12)] 

 

All possible signed permutations can also be obtained: 

 

>>> from sympy.utilities.iterables import signed_permutations 

>>> list(signed_permutations((1, 12))) 

[(1, 12), (-1, 12), (1, -12), (-1, -12), (12, 1), (-12, 1), (12, -1), (-12, -1)] 

""" 

n, p, k = [as_int(i) for i in (n, p, k)] 

 

if n < 0: 

if p % 2: 

for t in power_representation(-n, p, k, zeros): 

yield tuple(-i for i in t) 

return 

 

if p < 1 or k < 1: 

raise ValueError(filldedent(''' 

Expecting positive integers for `(p, k)`, but got `(%s, %s)`''' 

% (p, k))) 

 

if n == 0: 

if zeros: 

yield (0,)*k 

return 

 

if k == 1: 

if p == 1: 

yield (n,) 

else: 

be = perfect_power(n) 

if be: 

b, e = be 

d, r = divmod(e, p) 

if not r: 

yield (b**d,) 

return 

 

if p == 1: 

for t in partition(n, k, zeros=zeros): 

yield t 

return 

 

if p == 2: 

feasible = _can_do_sum_of_squares(n, k) 

if not feasible: 

return 

if not zeros and n > 33 and k >= 5 and k <= n and n - k in ( 

13, 10, 7, 5, 4, 2, 1): 

'''Todd G. Will, "When Is n^2 a Sum of k Squares?", [online]. 

Available: https://www.maa.org/sites/default/files/Will-MMz-201037918.pdf''' 

return 

if feasible is 1: # it's prime and k == 2 

yield prime_as_sum_of_two_squares(n) 

return 

 

if k == 2 and p > 2: 

be = perfect_power(n) 

if be and be[1] % p == 0: 

return # Fermat: a**n + b**n = c**n has no solution for n > 2 

 

if n >= k: 

a = integer_nthroot(n - (k - 1), p)[0] 

for t in pow_rep_recursive(a, k, n, [], p): 

yield tuple(reversed(t)) 

 

if zeros: 

a = integer_nthroot(n, p)[0] 

for i in range(1, k): 

for t in pow_rep_recursive(a, i, n, [], p): 

yield tuple(reversed(t + (0,) * (k - i))) 

 

 

sum_of_powers = power_representation 

 

 

def pow_rep_recursive(n_i, k, n_remaining, terms, p): 

 

if k == 0 and n_remaining == 0: 

yield tuple(terms) 

else: 

if n_i >= 1 and k > 0: 

for t in pow_rep_recursive(n_i - 1, k, n_remaining, terms, p): 

yield t 

residual = n_remaining - pow(n_i, p) 

if residual >= 0: 

for t in pow_rep_recursive(n_i, k - 1, residual, terms + [n_i], p): 

yield t 

 

 

def sum_of_squares(n, k, zeros=False): 

"""Return a generator that yields the k-tuples of nonnegative 

values, the squares of which sum to n. If zeros is False (default) 

then the solution will not contain zeros. The nonnegative 

elements of a tuple are sorted. 

 

* If k == 1 and n is square, (n,) is returned. 

 

* If k == 2 then n can only be written as a sum of squares if 

every prime in the factorization of n that has the form 

4*k + 3 has an even multiplicity. If n is prime then 

it can only be written as a sum of two squares if it is 

in the form 4*k + 1. 

 

* if k == 3 then n can be written as a sum of squares if it does 

not have the form 4**m*(8*k + 7). 

 

* all integers can be written as the sum of 4 squares. 

 

* if k > 4 then n can be partitioned and each partition can 

be written as a sum of 4 squares; if n is not evenly divisible 

by 4 then n can be written as a sum of squares only if the 

an additional partition can be written as sum of squares. 

For example, if k = 6 then n is partitioned into two parts, 

the first being written as a sum of 4 squares and the second 

being written as a sum of 2 squares -- which can only be 

done if the condition above for k = 2 can be met, so this will 

automatically reject certain partitions of n. 

 

Examples 

======== 

 

>>> from sympy.solvers.diophantine import sum_of_squares 

>>> list(sum_of_squares(25, 2)) 

[(3, 4)] 

>>> list(sum_of_squares(25, 2, True)) 

[(3, 4), (0, 5)] 

>>> list(sum_of_squares(25, 4)) 

[(1, 2, 2, 4)] 

 

See Also 

======== 

sympy.utilities.iterables.signed_permutations 

""" 

for t in power_representation(n, 2, k, zeros): 

yield t 

 

 

def _can_do_sum_of_squares(n, k): 

"""Return True if n can be written as the sum of k squares, 

False if it can't, or 1 if k == 2 and n is prime (in which 

case it *can* be written as a sum of two squares). A False 

is returned only if it can't be written as k-squares, even 

if 0s are allowed. 

""" 

if k < 1: 

return False 

if n < 0: 

return False 

if n == 0: 

return True 

if k == 1: 

return is_square(n) 

if k == 2: 

if n in (1, 2): 

return True 

if isprime(n): 

if n % 4 == 1: 

return 1 # signal that it was prime 

return False 

else: 

f = factorint(n) 

for p, m in f.items(): 

# we can proceed iff no prime factor in the form 4*k + 3 

# has an odd multiplicity 

if (p % 4 == 3) and m % 2: 

return False 

return True 

if k == 3: 

if (n//4**multiplicity(4, n)) % 8 == 7: 

return False 

# every number can be written as a sum of 4 squares; for k > 4 partitions 

# can be 0 

return True