Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

r""" 

This module is intended for solving recurrences or, in other words, 

difference equations. Currently supported are linear, inhomogeneous 

equations with polynomial or rational coefficients. 

 

The solutions are obtained among polynomials, rational functions, 

hypergeometric terms, or combinations of hypergeometric term which 

are pairwise dissimilar. 

 

``rsolve_X`` functions were meant as a low level interface 

for ``rsolve`` which would use Mathematica's syntax. 

 

Given a recurrence relation: 

 

.. math:: a_{k}(n) y(n+k) + a_{k-1}(n) y(n+k-1) + 

... + a_{0}(n) y(n) = f(n) 

 

where `k > 0` and `a_{i}(n)` are polynomials in `n`. To use 

``rsolve_X`` we need to put all coefficients in to a list ``L`` of 

`k+1` elements the following way: 

 

``L = [ a_{0}(n), ..., a_{k-1}(n), a_{k}(n) ]`` 

 

where ``L[i]``, for `i=0, \ldots, k`, maps to 

`a_{i}(n) y(n+i)` (`y(n+i)` is implicit). 

 

For example if we would like to compute `m`-th Bernoulli polynomial 

up to a constant (example was taken from rsolve_poly docstring), 

then we would use `b(n+1) - b(n) = m n^{m-1}` recurrence, which 

has solution `b(n) = B_m + C`. 

 

Then ``L = [-1, 1]`` and `f(n) = m n^(m-1)` and finally for `m=4`: 

 

>>> from sympy import Symbol, bernoulli, rsolve_poly 

>>> n = Symbol('n', integer=True) 

 

>>> rsolve_poly([-1, 1], 4*n**3, n) 

C0 + n**4 - 2*n**3 + n**2 

 

>>> bernoulli(4, n) 

n**4 - 2*n**3 + n**2 - 1/30 

 

For the sake of completeness, `f(n)` can be: 

 

[1] a polynomial -> rsolve_poly 

[2] a rational function -> rsolve_ratio 

[3] a hypergeometric function -> rsolve_hyper 

""" 

from __future__ import print_function, division 

 

from collections import defaultdict 

 

from sympy.core.singleton import S 

from sympy.core.numbers import Rational, I 

from sympy.core.symbol import Symbol, Wild, Dummy 

from sympy.core.relational import Equality 

from sympy.core.add import Add 

from sympy.core.mul import Mul 

from sympy.core import sympify 

 

from sympy.simplify import simplify, hypersimp, hypersimilar 

from sympy.solvers import solve, solve_undetermined_coeffs 

from sympy.polys import Poly, quo, gcd, lcm, roots, resultant 

from sympy.functions import binomial, factorial, FallingFactorial, RisingFactorial 

from sympy.matrices import Matrix, casoratian 

from sympy.concrete import product 

from sympy.core.compatibility import default_sort_key, range 

from sympy.utilities.iterables import numbered_symbols 

 

 

def rsolve_poly(coeffs, f, n, **hints): 

r""" 

Given linear recurrence operator `\operatorname{L}` of order 

`k` with polynomial coefficients and inhomogeneous equation 

`\operatorname{L} y = f`, where `f` is a polynomial, we seek for 

all polynomial solutions over field `K` of characteristic zero. 

 

The algorithm performs two basic steps: 

 

(1) Compute degree `N` of the general polynomial solution. 

(2) Find all polynomials of degree `N` or less 

of `\operatorname{L} y = f`. 

 

There are two methods for computing the polynomial solutions. 

If the degree bound is relatively small, i.e. it's smaller than 

or equal to the order of the recurrence, then naive method of 

undetermined coefficients is being used. This gives system 

of algebraic equations with `N+1` unknowns. 

 

In the other case, the algorithm performs transformation of the 

initial equation to an equivalent one, for which the system of 

algebraic equations has only `r` indeterminates. This method is 

quite sophisticated (in comparison with the naive one) and was 

invented together by Abramov, Bronstein and Petkovsek. 

 

It is possible to generalize the algorithm implemented here to 

the case of linear q-difference and differential equations. 

 

Lets say that we would like to compute `m`-th Bernoulli polynomial 

up to a constant. For this we can use `b(n+1) - b(n) = m n^{m-1}` 

recurrence, which has solution `b(n) = B_m + C`. For example: 

 

>>> from sympy import Symbol, rsolve_poly 

>>> n = Symbol('n', integer=True) 

 

>>> rsolve_poly([-1, 1], 4*n**3, n) 

C0 + n**4 - 2*n**3 + n**2 

 

References 

========== 

 

.. [1] S. A. Abramov, M. Bronstein and M. Petkovsek, On polynomial 

solutions of linear operator equations, in: T. Levelt, ed., 

Proc. ISSAC '95, ACM Press, New York, 1995, 290-296. 

 

.. [2] M. Petkovsek, Hypergeometric solutions of linear recurrences 

with polynomial coefficients, J. Symbolic Computation, 

14 (1992), 243-264. 

 

.. [3] M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, 1996. 

 

""" 

f = sympify(f) 

 

if not f.is_polynomial(n): 

return None 

 

homogeneous = f.is_zero 

 

r = len(coeffs) - 1 

 

coeffs = [ Poly(coeff, n) for coeff in coeffs ] 

 

polys = [ Poly(0, n) ] * (r + 1) 

terms = [ (S.Zero, S.NegativeInfinity) ] *(r + 1) 

 

for i in range(0, r + 1): 

for j in range(i, r + 1): 

polys[i] += coeffs[j]*binomial(j, i) 

 

if not polys[i].is_zero: 

(exp,), coeff = polys[i].LT() 

terms[i] = (coeff, exp) 

 

d = b = terms[0][1] 

 

for i in range(1, r + 1): 

if terms[i][1] > d: 

d = terms[i][1] 

 

if terms[i][1] - i > b: 

b = terms[i][1] - i 

 

d, b = int(d), int(b) 

 

x = Dummy('x') 

 

degree_poly = S.Zero 

 

for i in range(0, r + 1): 

if terms[i][1] - i == b: 

degree_poly += terms[i][0]*FallingFactorial(x, i) 

 

nni_roots = list(roots(degree_poly, x, filter='Z', 

predicate=lambda r: r >= 0).keys()) 

 

if nni_roots: 

N = [max(nni_roots)] 

else: 

N = [] 

 

if homogeneous: 

N += [-b - 1] 

else: 

N += [f.as_poly(n).degree() - b, -b - 1] 

 

N = int(max(N)) 

 

if N < 0: 

if homogeneous: 

if hints.get('symbols', False): 

return (S.Zero, []) 

else: 

return S.Zero 

else: 

return None 

 

if N <= r: 

C = [] 

y = E = S.Zero 

 

for i in range(0, N + 1): 

C.append(Symbol('C' + str(i))) 

y += C[i] * n**i 

 

for i in range(0, r + 1): 

E += coeffs[i].as_expr()*y.subs(n, n + i) 

 

solutions = solve_undetermined_coeffs(E - f, C, n) 

 

if solutions is not None: 

C = [ c for c in C if (c not in solutions) ] 

result = y.subs(solutions) 

else: 

return None # TBD 

else: 

A = r 

U = N + A + b + 1 

 

nni_roots = list(roots(polys[r], filter='Z', 

predicate=lambda r: r >= 0).keys()) 

 

if nni_roots != []: 

a = max(nni_roots) + 1 

else: 

a = S.Zero 

 

def _zero_vector(k): 

return [S.Zero] * k 

 

def _one_vector(k): 

return [S.One] * k 

 

def _delta(p, k): 

B = S.One 

D = p.subs(n, a + k) 

 

for i in range(1, k + 1): 

B *= -Rational(k - i + 1, i) 

D += B * p.subs(n, a + k - i) 

 

return D 

 

alpha = {} 

 

for i in range(-A, d + 1): 

I = _one_vector(d + 1) 

 

for k in range(1, d + 1): 

I[k] = I[k - 1] * (x + i - k + 1)/k 

 

alpha[i] = S.Zero 

 

for j in range(0, A + 1): 

for k in range(0, d + 1): 

B = binomial(k, i + j) 

D = _delta(polys[j].as_expr(), k) 

 

alpha[i] += I[k]*B*D 

 

V = Matrix(U, A, lambda i, j: int(i == j)) 

 

if homogeneous: 

for i in range(A, U): 

v = _zero_vector(A) 

 

for k in range(1, A + b + 1): 

if i - k < 0: 

break 

 

B = alpha[k - A].subs(x, i - k) 

 

for j in range(0, A): 

v[j] += B * V[i - k, j] 

 

denom = alpha[-A].subs(x, i) 

 

for j in range(0, A): 

V[i, j] = -v[j] / denom 

else: 

G = _zero_vector(U) 

 

for i in range(A, U): 

v = _zero_vector(A) 

g = S.Zero 

 

for k in range(1, A + b + 1): 

if i - k < 0: 

break 

 

B = alpha[k - A].subs(x, i - k) 

 

for j in range(0, A): 

v[j] += B * V[i - k, j] 

 

g += B * G[i - k] 

 

denom = alpha[-A].subs(x, i) 

 

for j in range(0, A): 

V[i, j] = -v[j] / denom 

 

G[i] = (_delta(f, i - A) - g) / denom 

 

P, Q = _one_vector(U), _zero_vector(A) 

 

for i in range(1, U): 

P[i] = (P[i - 1] * (n - a - i + 1)/i).expand() 

 

for i in range(0, A): 

Q[i] = Add(*[ (v*p).expand() for v, p in zip(V[:, i], P) ]) 

 

if not homogeneous: 

h = Add(*[ (g*p).expand() for g, p in zip(G, P) ]) 

 

C = [ Symbol('C' + str(i)) for i in range(0, A) ] 

 

g = lambda i: Add(*[ c*_delta(q, i) for c, q in zip(C, Q) ]) 

 

if homogeneous: 

E = [ g(i) for i in range(N + 1, U) ] 

else: 

E = [ g(i) + _delta(h, i) for i in range(N + 1, U) ] 

 

if E != []: 

solutions = solve(E, *C) 

 

if not solutions: 

if homogeneous: 

if hints.get('symbols', False): 

return (S.Zero, []) 

else: 

return S.Zero 

else: 

return None 

else: 

solutions = {} 

 

if homogeneous: 

result = S.Zero 

else: 

result = h 

 

for c, q in list(zip(C, Q)): 

if c in solutions: 

s = solutions[c]*q 

C.remove(c) 

else: 

s = c*q 

 

result += s.expand() 

 

if hints.get('symbols', False): 

return (result, C) 

else: 

return result 

 

 

def rsolve_ratio(coeffs, f, n, **hints): 

r""" 

Given linear recurrence operator `\operatorname{L}` of order `k` 

with polynomial coefficients and inhomogeneous equation 

`\operatorname{L} y = f`, where `f` is a polynomial, we seek 

for all rational solutions over field `K` of characteristic zero. 

 

This procedure accepts only polynomials, however if you are 

interested in solving recurrence with rational coefficients 

then use ``rsolve`` which will pre-process the given equation 

and run this procedure with polynomial arguments. 

 

The algorithm performs two basic steps: 

 

(1) Compute polynomial `v(n)` which can be used as universal 

denominator of any rational solution of equation 

`\operatorname{L} y = f`. 

 

(2) Construct new linear difference equation by substitution 

`y(n) = u(n)/v(n)` and solve it for `u(n)` finding all its 

polynomial solutions. Return ``None`` if none were found. 

 

Algorithm implemented here is a revised version of the original 

Abramov's algorithm, developed in 1989. The new approach is much 

simpler to implement and has better overall efficiency. This 

method can be easily adapted to q-difference equations case. 

 

Besides finding rational solutions alone, this functions is 

an important part of Hyper algorithm were it is used to find 

particular solution of inhomogeneous part of a recurrence. 

 

Examples 

======== 

 

>>> from sympy.abc import x 

>>> from sympy.solvers.recurr import rsolve_ratio 

>>> rsolve_ratio([-2*x**3 + x**2 + 2*x - 1, 2*x**3 + x**2 - 6*x, 

... - 2*x**3 - 11*x**2 - 18*x - 9, 2*x**3 + 13*x**2 + 22*x + 8], 0, x) 

C2*(2*x - 3)/(2*(x**2 - 1)) 

 

References 

========== 

 

.. [1] S. A. Abramov, Rational solutions of linear difference 

and q-difference equations with polynomial coefficients, 

in: T. Levelt, ed., Proc. ISSAC '95, ACM Press, New York, 

1995, 285-289 

 

See Also 

======== 

 

rsolve_hyper 

""" 

f = sympify(f) 

 

if not f.is_polynomial(n): 

return None 

 

coeffs = list(map(sympify, coeffs)) 

 

r = len(coeffs) - 1 

 

A, B = coeffs[r], coeffs[0] 

A = A.subs(n, n - r).expand() 

 

h = Dummy('h') 

 

res = resultant(A, B.subs(n, n + h), n) 

 

if not res.is_polynomial(h): 

p, q = res.as_numer_denom() 

res = quo(p, q, h) 

 

nni_roots = list(roots(res, h, filter='Z', 

predicate=lambda r: r >= 0).keys()) 

 

if not nni_roots: 

return rsolve_poly(coeffs, f, n, **hints) 

else: 

C, numers = S.One, [S.Zero]*(r + 1) 

 

for i in range(int(max(nni_roots)), -1, -1): 

d = gcd(A, B.subs(n, n + i), n) 

 

A = quo(A, d, n) 

B = quo(B, d.subs(n, n - i), n) 

 

C *= Mul(*[ d.subs(n, n - j) for j in range(0, i + 1) ]) 

 

denoms = [ C.subs(n, n + i) for i in range(0, r + 1) ] 

 

for i in range(0, r + 1): 

g = gcd(coeffs[i], denoms[i], n) 

 

numers[i] = quo(coeffs[i], g, n) 

denoms[i] = quo(denoms[i], g, n) 

 

for i in range(0, r + 1): 

numers[i] *= Mul(*(denoms[:i] + denoms[i + 1:])) 

 

result = rsolve_poly(numers, f * Mul(*denoms), n, **hints) 

 

if result is not None: 

if hints.get('symbols', False): 

return (simplify(result[0] / C), result[1]) 

else: 

return simplify(result / C) 

else: 

return None 

 

 

def rsolve_hyper(coeffs, f, n, **hints): 

r""" 

Given linear recurrence operator `\operatorname{L}` of order `k` 

with polynomial coefficients and inhomogeneous equation 

`\operatorname{L} y = f` we seek for all hypergeometric solutions 

over field `K` of characteristic zero. 

 

The inhomogeneous part can be either hypergeometric or a sum 

of a fixed number of pairwise dissimilar hypergeometric terms. 

 

The algorithm performs three basic steps: 

 

(1) Group together similar hypergeometric terms in the 

inhomogeneous part of `\operatorname{L} y = f`, and find 

particular solution using Abramov's algorithm. 

 

(2) Compute generating set of `\operatorname{L}` and find basis 

in it, so that all solutions are linearly independent. 

 

(3) Form final solution with the number of arbitrary 

constants equal to dimension of basis of `\operatorname{L}`. 

 

Term `a(n)` is hypergeometric if it is annihilated by first order 

linear difference equations with polynomial coefficients or, in 

simpler words, if consecutive term ratio is a rational function. 

 

The output of this procedure is a linear combination of fixed 

number of hypergeometric terms. However the underlying method 

can generate larger class of solutions - D'Alembertian terms. 

 

Note also that this method not only computes the kernel of the 

inhomogeneous equation, but also reduces in to a basis so that 

solutions generated by this procedure are linearly independent 

 

Examples 

======== 

 

>>> from sympy.solvers import rsolve_hyper 

>>> from sympy.abc import x 

 

>>> rsolve_hyper([-1, -1, 1], 0, x) 

C0*(1/2 + sqrt(5)/2)**x + C1*(-sqrt(5)/2 + 1/2)**x 

 

>>> rsolve_hyper([-1, 1], 1 + x, x) 

C0 + x*(x + 1)/2 

 

References 

========== 

 

.. [1] M. Petkovsek, Hypergeometric solutions of linear recurrences 

with polynomial coefficients, J. Symbolic Computation, 

14 (1992), 243-264. 

 

.. [2] M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, 1996. 

""" 

coeffs = list(map(sympify, coeffs)) 

 

f = sympify(f) 

 

r, kernel, symbols = len(coeffs) - 1, [], set() 

 

if not f.is_zero: 

if f.is_Add: 

similar = {} 

 

for g in f.expand().args: 

if not g.is_hypergeometric(n): 

return None 

 

for h in similar.keys(): 

if hypersimilar(g, h, n): 

similar[h] += g 

break 

else: 

similar[g] = S.Zero 

 

inhomogeneous = [] 

 

for g, h in similar.items(): 

inhomogeneous.append(g + h) 

elif f.is_hypergeometric(n): 

inhomogeneous = [f] 

else: 

return None 

 

for i, g in enumerate(inhomogeneous): 

coeff, polys = S.One, coeffs[:] 

denoms = [ S.One ] * (r + 1) 

 

s = hypersimp(g, n) 

 

for j in range(1, r + 1): 

coeff *= s.subs(n, n + j - 1) 

 

p, q = coeff.as_numer_denom() 

 

polys[j] *= p 

denoms[j] = q 

 

for j in range(0, r + 1): 

polys[j] *= Mul(*(denoms[:j] + denoms[j + 1:])) 

 

R = rsolve_poly(polys, Mul(*denoms), n) 

 

if not (R is None or R is S.Zero): 

inhomogeneous[i] *= R 

else: 

return None 

 

result = Add(*inhomogeneous) 

else: 

result = S.Zero 

 

Z = Dummy('Z') 

 

p, q = coeffs[0], coeffs[r].subs(n, n - r + 1) 

 

p_factors = [ z for z in roots(p, n).keys() ] 

q_factors = [ z for z in roots(q, n).keys() ] 

 

factors = [ (S.One, S.One) ] 

 

for p in p_factors: 

for q in q_factors: 

if p.is_integer and q.is_integer and p <= q: 

continue 

else: 

factors += [(n - p, n - q)] 

 

p = [ (n - p, S.One) for p in p_factors ] 

q = [ (S.One, n - q) for q in q_factors ] 

 

factors = p + factors + q 

 

for A, B in factors: 

polys, degrees = [], [] 

D = A*B.subs(n, n + r - 1) 

 

for i in range(0, r + 1): 

a = Mul(*[ A.subs(n, n + j) for j in range(0, i) ]) 

b = Mul(*[ B.subs(n, n + j) for j in range(i, r) ]) 

 

poly = quo(coeffs[i]*a*b, D, n) 

polys.append(poly.as_poly(n)) 

 

if not poly.is_zero: 

degrees.append(polys[i].degree()) 

 

if degrees: 

d, poly = max(degrees), S.Zero 

else: 

return None 

 

for i in range(0, r + 1): 

coeff = polys[i].nth(d) 

 

if coeff is not S.Zero: 

poly += coeff * Z**i 

 

for z in roots(poly, Z).keys(): 

if z.is_zero: 

continue 

 

(C, s) = rsolve_poly([ polys[i]*z**i for i in range(r + 1) ], 0, n, symbols=True) 

 

if C is not None and C is not S.Zero: 

symbols |= set(s) 

 

ratio = z * A * C.subs(n, n + 1) / B / C 

ratio = simplify(ratio) 

# If there is a nonnegative root in the denominator of the ratio, 

# this indicates that the term y(n_root) is zero, and one should 

# start the product with the term y(n_root + 1). 

n0 = 0 

for n_root in roots(ratio.as_numer_denom()[1], n).keys(): 

if n_root.has(I): 

return None 

elif (n0 < (n_root + 1)) == True: 

n0 = n_root + 1 

K = product(ratio, (n, n0, n - 1)) 

if K.has(factorial, FallingFactorial, RisingFactorial): 

K = simplify(K) 

 

if casoratian(kernel + [K], n, zero=False) != 0: 

kernel.append(K) 

 

kernel.sort(key=default_sort_key) 

sk = list(zip(numbered_symbols('C'), kernel)) 

 

if sk: 

for C, ker in sk: 

result += C * ker 

else: 

return None 

 

if hints.get('symbols', False): 

symbols |= {s for s, k in sk} 

return (result, list(symbols)) 

else: 

return result 

 

 

def rsolve(f, y, init=None): 

r""" 

Solve univariate recurrence with rational coefficients. 

 

Given `k`-th order linear recurrence `\operatorname{L} y = f`, 

or equivalently: 

 

.. math:: a_{k}(n) y(n+k) + a_{k-1}(n) y(n+k-1) + 

\cdots + a_{0}(n) y(n) = f(n) 

 

where `a_{i}(n)`, for `i=0, \ldots, k`, are polynomials or rational 

functions in `n`, and `f` is a hypergeometric function or a sum 

of a fixed number of pairwise dissimilar hypergeometric terms in 

`n`, finds all solutions or returns ``None``, if none were found. 

 

Initial conditions can be given as a dictionary in two forms: 

 

(1) ``{ n_0 : v_0, n_1 : v_1, ..., n_m : v_m }`` 

(2) ``{ y(n_0) : v_0, y(n_1) : v_1, ..., y(n_m) : v_m }`` 

 

or as a list ``L`` of values: 

 

``L = [ v_0, v_1, ..., v_m ]`` 

 

where ``L[i] = v_i``, for `i=0, \ldots, m`, maps to `y(n_i)`. 

 

Examples 

======== 

 

Lets consider the following recurrence: 

 

.. math:: (n - 1) y(n + 2) - (n^2 + 3 n - 2) y(n + 1) + 

2 n (n + 1) y(n) = 0 

 

>>> from sympy import Function, rsolve 

>>> from sympy.abc import n 

>>> y = Function('y') 

 

>>> f = (n - 1)*y(n + 2) - (n**2 + 3*n - 2)*y(n + 1) + 2*n*(n + 1)*y(n) 

 

>>> rsolve(f, y(n)) 

2**n*C0 + C1*factorial(n) 

 

>>> rsolve(f, y(n), { y(0):0, y(1):3 }) 

3*2**n - 3*factorial(n) 

 

See Also 

======== 

 

rsolve_poly, rsolve_ratio, rsolve_hyper 

 

""" 

if isinstance(f, Equality): 

f = f.lhs - f.rhs 

 

n = y.args[0] 

k = Wild('k', exclude=(n,)) 

 

# Preprocess user input to allow things like 

# y(n) + a*(y(n + 1) + y(n - 1))/2 

f = f.expand().collect(y.func(Wild('m', integer=True))) 

 

h_part = defaultdict(lambda: S.Zero) 

i_part = S.Zero 

for g in Add.make_args(f): 

coeff = S.One 

kspec = None 

for h in Mul.make_args(g): 

if h.is_Function: 

if h.func == y.func: 

result = h.args[0].match(n + k) 

 

if result is not None: 

kspec = int(result[k]) 

else: 

raise ValueError( 

"'%s(%s+k)' expected, got '%s'" % (y.func, n, h)) 

else: 

raise ValueError( 

"'%s' expected, got '%s'" % (y.func, h.func)) 

else: 

coeff *= h 

 

if kspec is not None: 

h_part[kspec] += coeff 

else: 

i_part += coeff 

 

for k, coeff in h_part.items(): 

h_part[k] = simplify(coeff) 

 

common = S.One 

 

for coeff in h_part.values(): 

if coeff.is_rational_function(n): 

if not coeff.is_polynomial(n): 

common = lcm(common, coeff.as_numer_denom()[1], n) 

else: 

raise ValueError( 

"Polynomial or rational function expected, got '%s'" % coeff) 

 

i_numer, i_denom = i_part.as_numer_denom() 

 

if i_denom.is_polynomial(n): 

common = lcm(common, i_denom, n) 

 

if common is not S.One: 

for k, coeff in h_part.items(): 

numer, denom = coeff.as_numer_denom() 

h_part[k] = numer*quo(common, denom, n) 

 

i_part = i_numer*quo(common, i_denom, n) 

 

K_min = min(h_part.keys()) 

 

if K_min < 0: 

K = abs(K_min) 

 

H_part = defaultdict(lambda: S.Zero) 

i_part = i_part.subs(n, n + K).expand() 

common = common.subs(n, n + K).expand() 

 

for k, coeff in h_part.items(): 

H_part[k + K] = coeff.subs(n, n + K).expand() 

else: 

H_part = h_part 

 

K_max = max(H_part.keys()) 

coeffs = [H_part[i] for i in range(K_max + 1)] 

 

result = rsolve_hyper(coeffs, -i_part, n, symbols=True) 

 

if result is None: 

return None 

 

solution, symbols = result 

 

if init == {} or init == []: 

init = None 

 

if symbols and init is not None: 

if type(init) is list: 

init = {i: init[i] for i in range(len(init))} 

 

equations = [] 

 

for k, v in init.items(): 

try: 

i = int(k) 

except TypeError: 

if k.is_Function and k.func == y.func: 

i = int(k.args[0]) 

else: 

raise ValueError("Integer or term expected, got '%s'" % k) 

try: 

eq = solution.limit(n, i) - v 

except NotImplementedError: 

eq = solution.subs(n, i) - v 

equations.append(eq) 

 

result = solve(equations, *symbols) 

 

if not result: 

return None 

else: 

solution = solution.subs(result) 

 

return solution