Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

""" 

This module contain solvers for all kinds of equations: 

 

- algebraic or transcendental, use solve() 

 

- recurrence, use rsolve() 

 

- differential, use dsolve() 

 

- nonlinear (numerically), use nsolve() 

(you will need a good starting point) 

 

""" 

 

from __future__ import print_function, division 

 

from sympy.core.compatibility import (iterable, is_sequence, ordered, 

default_sort_key, range) 

from sympy.core.sympify import sympify 

from sympy.core import (S, Add, Symbol, Equality, Dummy, Expr, Mul, 

Pow, Unequality) 

from sympy.core.exprtools import factor_terms 

from sympy.core.function import (expand_mul, expand_multinomial, expand_log, 

Derivative, AppliedUndef, UndefinedFunction, nfloat, 

Function, expand_power_exp, Lambda, _mexpand) 

from sympy.integrals.integrals import Integral 

from sympy.core.numbers import ilcm, Float 

from sympy.core.relational import Relational, Ge, _canonical 

from sympy.core.logic import fuzzy_not, fuzzy_and 

from sympy.logic.boolalg import And, Or, BooleanAtom 

from sympy.core.basic import preorder_traversal 

 

from sympy.functions import (log, exp, LambertW, cos, sin, tan, acos, asin, atan, 

Abs, re, im, arg, sqrt, atan2) 

from sympy.functions.elementary.trigonometric import (TrigonometricFunction, 

HyperbolicFunction) 

from sympy.simplify import (simplify, collect, powsimp, posify, powdenest, 

nsimplify, denom, logcombine) 

from sympy.simplify.sqrtdenest import sqrt_depth 

from sympy.simplify.fu import TR1 

from sympy.matrices import Matrix, zeros 

from sympy.polys import roots, cancel, factor, Poly, together, degree 

from sympy.polys.polyerrors import GeneratorsNeeded, PolynomialError 

from sympy.functions.elementary.piecewise import piecewise_fold, Piecewise 

 

from sympy.utilities.lambdify import lambdify 

from sympy.utilities.misc import filldedent 

from sympy.utilities.iterables import uniq, generate_bell, flatten 

from sympy.utilities.decorator import conserve_mpmath_dps 

 

from mpmath import findroot 

 

from sympy.solvers.polysys import solve_poly_system 

from sympy.solvers.inequalities import reduce_inequalities 

 

from types import GeneratorType 

from collections import defaultdict 

import warnings 

 

 

def recast_to_symbols(eqs, symbols): 

"""Return (e, s, d) where e and s are versions of eqs and 

symbols in which any non-Symbol objects in symbols have 

been replaced with generic Dummy symbols and d is a dictionary 

that can be used to restore the original expressions. 

 

Examples 

======== 

 

>>> from sympy.solvers.solvers import recast_to_symbols 

>>> from sympy import symbols, Function 

>>> x, y = symbols('x y') 

>>> fx = Function('f')(x) 

>>> eqs, syms = [fx + 1, x, y], [fx, y] 

>>> e, s, d = recast_to_symbols(eqs, syms); (e, s, d) 

([_X0 + 1, x, y], [_X0, y], {_X0: f(x)}) 

 

The original equations and symbols can be restored using d: 

 

>>> assert [i.xreplace(d) for i in eqs] == eqs 

>>> assert [d.get(i, i) for i in s] == syms 

""" 

if not iterable(eqs) and iterable(symbols): 

raise ValueError('Both eqs and symbols must be iterable') 

new_symbols = list(symbols) 

swap_sym = {} 

for i, s in enumerate(symbols): 

if not isinstance(s, Symbol) and s not in swap_sym: 

swap_sym[s] = Dummy('X%d' % i) 

new_symbols[i] = swap_sym[s] 

new_f = [] 

for i in eqs: 

try: 

new_f.append(i.subs(swap_sym)) 

except AttributeError: 

new_f.append(i) 

swap_sym = {v: k for k, v in swap_sym.items()} 

return new_f, new_symbols, swap_sym 

 

 

def _ispow(e): 

"""Return True if e is a Pow or is exp.""" 

return isinstance(e, Expr) and (e.is_Pow or isinstance(e, exp)) 

 

 

def _simple_dens(f, symbols): 

# when checking if a denominator is zero, we can just check the 

# base of powers with nonzero exponents since if the base is zero 

# the power will be zero, too. To keep it simple and fast, we 

# limit simplification to exponents that are Numbers 

dens = set() 

for d in denoms(f, symbols): 

if d.is_Pow and d.exp.is_Number: 

if d.exp.is_zero: 

continue # foo**0 is never 0 

d = d.base 

dens.add(d) 

return dens 

 

 

def denoms(eq, *symbols): 

"""Return (recursively) set of all denominators that appear in eq 

that contain any symbol in ``symbols``; if ``symbols`` are not 

provided then all denominators will be returned. 

 

Examples 

======== 

 

>>> from sympy.solvers.solvers import denoms 

>>> from sympy.abc import x, y, z 

>>> from sympy import sqrt 

 

>>> denoms(x/y) 

{y} 

 

>>> denoms(x/(y*z)) 

{y, z} 

 

>>> denoms(3/x + y/z) 

{x, z} 

 

>>> denoms(x/2 + y/z) 

{2, z} 

 

If `symbols` are provided then only denominators containing 

those symbols will be returned 

 

>>> denoms(1/x + 1/y + 1/z, y, z) 

{y, z} 

""" 

 

pot = preorder_traversal(eq) 

dens = set() 

for p in pot: 

den = denom(p) 

if den is S.One: 

continue 

for d in Mul.make_args(den): 

dens.add(d) 

if not symbols: 

return dens 

elif len(symbols) == 1: 

if iterable(symbols[0]): 

symbols = symbols[0] 

rv = [] 

for d in dens: 

free = d.free_symbols 

if any(s in free for s in symbols): 

rv.append(d) 

return set(rv) 

 

 

def checksol(f, symbol, sol=None, **flags): 

"""Checks whether sol is a solution of equation f == 0. 

 

Input can be either a single symbol and corresponding value 

or a dictionary of symbols and values. When given as a dictionary 

and flag ``simplify=True``, the values in the dictionary will be 

simplified. ``f`` can be a single equation or an iterable of equations. 

A solution must satisfy all equations in ``f`` to be considered valid; 

if a solution does not satisfy any equation, False is returned; if one or 

more checks are inconclusive (and none are False) then None 

is returned. 

 

Examples 

======== 

 

>>> from sympy import symbols 

>>> from sympy.solvers import checksol 

>>> x, y = symbols('x,y') 

>>> checksol(x**4 - 1, x, 1) 

True 

>>> checksol(x**4 - 1, x, 0) 

False 

>>> checksol(x**2 + y**2 - 5**2, {x: 3, y: 4}) 

True 

 

To check if an expression is zero using checksol, pass it 

as ``f`` and send an empty dictionary for ``symbol``: 

 

>>> checksol(x**2 + x - x*(x + 1), {}) 

True 

 

None is returned if checksol() could not conclude. 

 

flags: 

'numerical=True (default)' 

do a fast numerical check if ``f`` has only one symbol. 

'minimal=True (default is False)' 

a very fast, minimal testing. 

'warn=True (default is False)' 

show a warning if checksol() could not conclude. 

'simplify=True (default)' 

simplify solution before substituting into function and 

simplify the function before trying specific simplifications 

'force=True (default is False)' 

make positive all symbols without assumptions regarding sign. 

 

""" 

from sympy.physics.units import Unit 

 

minimal = flags.get('minimal', False) 

 

if sol is not None: 

sol = {symbol: sol} 

elif isinstance(symbol, dict): 

sol = symbol 

else: 

msg = 'Expecting (sym, val) or ({sym: val}, None) but got (%s, %s)' 

raise ValueError(msg % (symbol, sol)) 

 

if iterable(f): 

if not f: 

raise ValueError('no functions to check') 

rv = True 

for fi in f: 

check = checksol(fi, sol, **flags) 

if check: 

continue 

if check is False: 

return False 

rv = None # don't return, wait to see if there's a False 

return rv 

 

if isinstance(f, Poly): 

f = f.as_expr() 

elif isinstance(f, (Equality, Unequality)): 

if f.rhs in (S.true, S.false): 

f = f.reversed 

B, E = f.args 

if B in (S.true, S.false): 

f = f.subs(sol) 

if f not in (S.true, S.false): 

return 

else: 

f = Add(f.lhs, -f.rhs, evaluate=False) 

 

if isinstance(f, BooleanAtom): 

return bool(f) 

elif not f.is_Relational and not f: 

return True 

 

if sol and not f.free_symbols & set(sol.keys()): 

# if f(y) == 0, x=3 does not set f(y) to zero...nor does it not 

return None 

 

illegal = set([S.NaN, 

S.ComplexInfinity, 

S.Infinity, 

S.NegativeInfinity]) 

if any(sympify(v).atoms() & illegal for k, v in sol.items()): 

return False 

 

was = f 

attempt = -1 

numerical = flags.get('numerical', True) 

while 1: 

attempt += 1 

if attempt == 0: 

val = f.subs(sol) 

if isinstance(val, Mul): 

val = val.as_independent(Unit)[0] 

if val.atoms() & illegal: 

return False 

elif attempt == 1: 

if val.free_symbols: 

if not val.is_constant(*list(sol.keys()), simplify=not minimal): 

return False 

# there are free symbols -- simple expansion might work 

_, val = val.as_content_primitive() 

val = expand_mul(expand_multinomial(val)) 

elif attempt == 2: 

if minimal: 

return 

if flags.get('simplify', True): 

for k in sol: 

sol[k] = simplify(sol[k]) 

# start over without the failed expanded form, possibly 

# with a simplified solution 

val = simplify(f.subs(sol)) 

if flags.get('force', True): 

val, reps = posify(val) 

# expansion may work now, so try again and check 

exval = expand_mul(expand_multinomial(val)) 

if exval.is_number or not exval.free_symbols: 

# we can decide now 

val = exval 

else: 

# if there are no radicals and no functions then this can't be 

# zero anymore -- can it? 

pot = preorder_traversal(expand_mul(val)) 

seen = set() 

saw_pow_func = False 

for p in pot: 

if p in seen: 

continue 

seen.add(p) 

if p.is_Pow and not p.exp.is_Integer: 

saw_pow_func = True 

elif p.is_Function: 

saw_pow_func = True 

elif isinstance(p, UndefinedFunction): 

saw_pow_func = True 

if saw_pow_func: 

break 

if saw_pow_func is False: 

return False 

if flags.get('force', True): 

# don't do a zero check with the positive assumptions in place 

val = val.subs(reps) 

nz = fuzzy_not(val.is_zero) 

if nz is not None: 

# issue 5673: nz may be True even when False 

# so these are just hacks to keep a false positive 

# from being returned 

 

# HACK 1: LambertW (issue 5673) 

if val.is_number and val.has(LambertW): 

# don't eval this to verify solution since if we got here, 

# numerical must be False 

return None 

 

# add other HACKs here if necessary, otherwise we assume 

# the nz value is correct 

return not nz 

break 

 

if val == was: 

continue 

elif val.is_Rational: 

return val == 0 

if numerical and not val.free_symbols: 

if val in (S.true, S.false): 

return bool(val) 

return bool(abs(val.n(18).n(12, chop=True)) < 1e-9) 

was = val 

 

if flags.get('warn', False): 

warnings.warn("\n\tWarning: could not verify solution %s." % sol) 

# returns None if it can't conclude 

# TODO: improve solution testing 

 

 

def failing_assumptions(expr, **assumptions): 

"""Return a dictionary containing assumptions with values not 

matching those of the passed assumptions. 

 

Examples 

======== 

 

>>> from sympy import failing_assumptions, Symbol 

 

>>> x = Symbol('x', real=True, positive=True) 

>>> y = Symbol('y') 

>>> failing_assumptions(6*x + y, real=True, positive=True) 

{'positive': None, 'real': None} 

 

>>> failing_assumptions(x**2 - 1, positive=True) 

{'positive': None} 

 

If all assumptions satisfy the `expr` an empty dictionary is returned. 

 

>>> failing_assumptions(x**2, positive=True) 

{} 

""" 

expr = sympify(expr) 

failed = {} 

for key in list(assumptions.keys()): 

test = getattr(expr, 'is_%s' % key, None) 

if test is not assumptions[key]: 

failed[key] = test 

return failed # {} or {assumption: value != desired} 

 

 

def check_assumptions(expr, against=None, **assumptions): 

"""Checks whether expression `expr` satisfies all assumptions. 

 

`assumptions` is a dict of assumptions: {'assumption': True|False, ...}. 

 

Examples 

======== 

 

>>> from sympy import Symbol, pi, I, exp, check_assumptions 

 

>>> check_assumptions(-5, integer=True) 

True 

>>> check_assumptions(pi, real=True, integer=False) 

True 

>>> check_assumptions(pi, real=True, negative=True) 

False 

>>> check_assumptions(exp(I*pi/7), real=False) 

True 

 

>>> x = Symbol('x', real=True, positive=True) 

>>> check_assumptions(2*x + 1, real=True, positive=True) 

True 

>>> check_assumptions(-2*x - 5, real=True, positive=True) 

False 

 

To check assumptions of ``expr`` against another variable or expression, 

pass the expression or variable as ``against``. 

 

>>> check_assumptions(2*x + 1, x) 

True 

 

`None` is returned if check_assumptions() could not conclude. 

 

>>> check_assumptions(2*x - 1, real=True, positive=True) 

>>> z = Symbol('z') 

>>> check_assumptions(z, real=True) 

 

See Also 

======== 

failing_assumptions 

""" 

expr = sympify(expr) 

if against: 

if not isinstance(against, Symbol): 

raise TypeError('against should be of type Symbol') 

if assumptions: 

raise AssertionError('No assumptions should be specified') 

assumptions = against.assumptions0 

def _test(key): 

v = getattr(expr, 'is_' + key, None) 

if v is not None: 

return assumptions[key] is v 

return fuzzy_and(_test(key) for key in assumptions) 

 

 

def solve(f, *symbols, **flags): 

r""" 

Algebraically solves equations and systems of equations. 

 

Currently supported are: 

- polynomial, 

- transcendental 

- piecewise combinations of the above 

- systems of linear and polynomial equations 

- systems containing relational expressions. 

 

Input is formed as: 

 

* f 

- a single Expr or Poly that must be zero, 

- an Equality 

- a Relational expression or boolean 

- iterable of one or more of the above 

 

* symbols (object(s) to solve for) specified as 

- none given (other non-numeric objects will be used) 

- single symbol 

- denested list of symbols 

e.g. solve(f, x, y) 

- ordered iterable of symbols 

e.g. solve(f, [x, y]) 

 

* flags 

'dict'=True (default is False) 

return list (perhaps empty) of solution mappings 

'set'=True (default is False) 

return list of symbols and set of tuple(s) of solution(s) 

'exclude=[] (default)' 

don't try to solve for any of the free symbols in exclude; 

if expressions are given, the free symbols in them will 

be extracted automatically. 

'check=True (default)' 

If False, don't do any testing of solutions. This can be 

useful if one wants to include solutions that make any 

denominator zero. 

'numerical=True (default)' 

do a fast numerical check if ``f`` has only one symbol. 

'minimal=True (default is False)' 

a very fast, minimal testing. 

'warn=True (default is False)' 

show a warning if checksol() could not conclude. 

'simplify=True (default)' 

simplify all but polynomials of order 3 or greater before 

returning them and (if check is not False) use the 

general simplify function on the solutions and the 

expression obtained when they are substituted into the 

function which should be zero 

'force=True (default is False)' 

make positive all symbols without assumptions regarding sign. 

'rational=True (default)' 

recast Floats as Rational; if this option is not used, the 

system containing floats may fail to solve because of issues 

with polys. If rational=None, Floats will be recast as 

rationals but the answer will be recast as Floats. If the 

flag is False then nothing will be done to the Floats. 

'manual=True (default is False)' 

do not use the polys/matrix method to solve a system of 

equations, solve them one at a time as you might "manually" 

'implicit=True (default is False)' 

allows solve to return a solution for a pattern in terms of 

other functions that contain that pattern; this is only 

needed if the pattern is inside of some invertible function 

like cos, exp, .... 

'particular=True (default is False)' 

instructs solve to try to find a particular solution to a linear 

system with as many zeros as possible; this is very expensive 

'quick=True (default is False)' 

when using particular=True, use a fast heuristic instead to find a 

solution with many zeros (instead of using the very slow method 

guaranteed to find the largest number of zeros possible) 

'cubics=True (default)' 

return explicit solutions when cubic expressions are encountered 

'quartics=True (default)' 

return explicit solutions when quartic expressions are encountered 

'quintics=True (default)' 

return explicit solutions (if possible) when quintic expressions 

are encountered 

 

Examples 

======== 

 

The output varies according to the input and can be seen by example:: 

 

>>> from sympy import solve, Poly, Eq, Function, exp 

>>> from sympy.abc import x, y, z, a, b 

>>> f = Function('f') 

 

* boolean or univariate Relational 

 

>>> solve(x < 3) 

(-oo < x) & (x < 3) 

 

 

* to always get a list of solution mappings, use flag dict=True 

 

>>> solve(x - 3, dict=True) 

[{x: 3}] 

>>> sol = solve([x - 3, y - 1], dict=True) 

>>> sol 

[{x: 3, y: 1}] 

>>> sol[0][x] 

3 

>>> sol[0][y] 

1 

 

 

* to get a list of symbols and set of solution(s) use flag set=True 

 

>>> solve([x**2 - 3, y - 1], set=True) 

([x, y], {(-sqrt(3), 1), (sqrt(3), 1)}) 

 

 

* single expression and single symbol that is in the expression 

 

>>> solve(x - y, x) 

[y] 

>>> solve(x - 3, x) 

[3] 

>>> solve(Eq(x, 3), x) 

[3] 

>>> solve(Poly(x - 3), x) 

[3] 

>>> solve(x**2 - y**2, x, set=True) 

([x], {(-y,), (y,)}) 

>>> solve(x**4 - 1, x, set=True) 

([x], {(-1,), (1,), (-I,), (I,)}) 

 

* single expression with no symbol that is in the expression 

 

>>> solve(3, x) 

[] 

>>> solve(x - 3, y) 

[] 

 

* single expression with no symbol given 

 

In this case, all free symbols will be selected as potential 

symbols to solve for. If the equation is univariate then a list 

of solutions is returned; otherwise -- as is the case when symbols are 

given as an iterable of length > 1 -- a list of mappings will be returned. 

 

>>> solve(x - 3) 

[3] 

>>> solve(x**2 - y**2) 

[{x: -y}, {x: y}] 

>>> solve(z**2*x**2 - z**2*y**2) 

[{x: -y}, {x: y}, {z: 0}] 

>>> solve(z**2*x - z**2*y**2) 

[{x: y**2}, {z: 0}] 

 

* when an object other than a Symbol is given as a symbol, it is 

isolated algebraically and an implicit solution may be obtained. 

This is mostly provided as a convenience to save one from replacing 

the object with a Symbol and solving for that Symbol. It will only 

work if the specified object can be replaced with a Symbol using the 

subs method. 

 

>>> solve(f(x) - x, f(x)) 

[x] 

>>> solve(f(x).diff(x) - f(x) - x, f(x).diff(x)) 

[x + f(x)] 

>>> solve(f(x).diff(x) - f(x) - x, f(x)) 

[-x + Derivative(f(x), x)] 

>>> solve(x + exp(x)**2, exp(x), set=True) 

([exp(x)], {(-sqrt(-x),), (sqrt(-x),)}) 

 

>>> from sympy import Indexed, IndexedBase, Tuple, sqrt 

>>> A = IndexedBase('A') 

>>> eqs = Tuple(A[1] + A[2] - 3, A[1] - A[2] + 1) 

>>> solve(eqs, eqs.atoms(Indexed)) 

{A[1]: 1, A[2]: 2} 

 

* To solve for a *symbol* implicitly, use 'implicit=True': 

 

>>> solve(x + exp(x), x) 

[-LambertW(1)] 

>>> solve(x + exp(x), x, implicit=True) 

[-exp(x)] 

 

* It is possible to solve for anything that can be targeted with 

subs: 

 

>>> solve(x + 2 + sqrt(3), x + 2) 

[-sqrt(3)] 

>>> solve((x + 2 + sqrt(3), x + 4 + y), y, x + 2) 

{y: -2 + sqrt(3), x + 2: -sqrt(3)} 

 

* Nothing heroic is done in this implicit solving so you may end up 

with a symbol still in the solution: 

 

>>> eqs = (x*y + 3*y + sqrt(3), x + 4 + y) 

>>> solve(eqs, y, x + 2) 

{y: -sqrt(3)/(x + 3), x + 2: (-2*x - 6 + sqrt(3))/(x + 3)} 

>>> solve(eqs, y*x, x) 

{x: -y - 4, x*y: -3*y - sqrt(3)} 

 

* if you attempt to solve for a number remember that the number 

you have obtained does not necessarily mean that the value is 

equivalent to the expression obtained: 

 

>>> solve(sqrt(2) - 1, 1) 

[sqrt(2)] 

>>> solve(x - y + 1, 1) # /!\ -1 is targeted, too 

[x/(y - 1)] 

>>> [_.subs(z, -1) for _ in solve((x - y + 1).subs(-1, z), 1)] 

[-x + y] 

 

* To solve for a function within a derivative, use dsolve. 

 

* single expression and more than 1 symbol 

 

* when there is a linear solution 

 

>>> solve(x - y**2, x, y) 

[(y**2, y)] 

>>> solve(x**2 - y, x, y) 

[(x, x**2)] 

>>> solve(x**2 - y, x, y, dict=True) 

[{y: x**2}] 

 

* when undetermined coefficients are identified 

 

* that are linear 

 

>>> solve((a + b)*x - b + 2, a, b) 

{a: -2, b: 2} 

 

* that are nonlinear 

 

>>> solve((a + b)*x - b**2 + 2, a, b, set=True) 

([a, b], {(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))}) 

 

* if there is no linear solution then the first successful 

attempt for a nonlinear solution will be returned 

 

>>> solve(x**2 - y**2, x, y, dict=True) 

[{x: -y}, {x: y}] 

>>> solve(x**2 - y**2/exp(x), x, y, dict=True) 

[{x: 2*LambertW(y/2)}] 

>>> solve(x**2 - y**2/exp(x), y, x) 

[(-x*sqrt(exp(x)), x), (x*sqrt(exp(x)), x)] 

 

* iterable of one or more of the above 

 

* involving relationals or bools 

 

>>> solve([x < 3, x - 2]) 

Eq(x, 2) 

>>> solve([x > 3, x - 2]) 

False 

 

* when the system is linear 

 

* with a solution 

 

>>> solve([x - 3], x) 

{x: 3} 

>>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y) 

{x: -3, y: 1} 

>>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y, z) 

{x: -3, y: 1} 

>>> solve((x + 5*y - 2, -3*x + 6*y - z), z, x, y) 

{x: -5*y + 2, z: 21*y - 6} 

 

* without a solution 

 

>>> solve([x + 3, x - 3]) 

[] 

 

* when the system is not linear 

 

>>> solve([x**2 + y -2, y**2 - 4], x, y, set=True) 

([x, y], {(-2, -2), (0, 2), (2, -2)}) 

 

* if no symbols are given, all free symbols will be selected and a list 

of mappings returned 

 

>>> solve([x - 2, x**2 + y]) 

[{x: 2, y: -4}] 

>>> solve([x - 2, x**2 + f(x)], {f(x), x}) 

[{x: 2, f(x): -4}] 

 

* if any equation doesn't depend on the symbol(s) given it will be 

eliminated from the equation set and an answer may be given 

implicitly in terms of variables that were not of interest 

 

>>> solve([x - y, y - 3], x) 

{x: y} 

 

Notes 

===== 

 

solve() with check=True (default) will run through the symbol tags to 

elimate unwanted solutions. If no assumptions are included all possible 

solutions will be returned. 

 

>>> from sympy import Symbol, solve 

>>> x = Symbol("x") 

>>> solve(x**2 - 1) 

[-1, 1] 

 

By using the positive tag only one solution will be returned: 

 

>>> pos = Symbol("pos", positive=True) 

>>> solve(pos**2 - 1) 

[1] 

 

 

Assumptions aren't checked when `solve()` input involves 

relationals or bools. 

 

When the solutions are checked, those that make any denominator zero 

are automatically excluded. If you do not want to exclude such solutions 

then use the check=False option: 

 

>>> from sympy import sin, limit 

>>> solve(sin(x)/x) # 0 is excluded 

[pi] 

 

If check=False then a solution to the numerator being zero is found: x = 0. 

In this case, this is a spurious solution since sin(x)/x has the well known 

limit (without dicontinuity) of 1 at x = 0: 

 

>>> solve(sin(x)/x, check=False) 

[0, pi] 

 

In the following case, however, the limit exists and is equal to the 

value of x = 0 that is excluded when check=True: 

 

>>> eq = x**2*(1/x - z**2/x) 

>>> solve(eq, x) 

[] 

>>> solve(eq, x, check=False) 

[0] 

>>> limit(eq, x, 0, '-') 

0 

>>> limit(eq, x, 0, '+') 

0 

 

Disabling high-order, explicit solutions 

---------------------------------------- 

 

When solving polynomial expressions, one might not want explicit solutions 

(which can be quite long). If the expression is univariate, CRootOf 

instances will be returned instead: 

 

>>> solve(x**3 - x + 1) 

[-1/((-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)) - (-1/2 - 

sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3, -(-1/2 + 

sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3 - 1/((-1/2 + 

sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)), -(3*sqrt(69)/2 + 

27/2)**(1/3)/3 - 1/(3*sqrt(69)/2 + 27/2)**(1/3)] 

>>> solve(x**3 - x + 1, cubics=False) 

[CRootOf(x**3 - x + 1, 0), 

CRootOf(x**3 - x + 1, 1), 

CRootOf(x**3 - x + 1, 2)] 

 

If the expression is multivariate, no solution might be returned: 

 

>>> solve(x**3 - x + a, x, cubics=False) 

[] 

 

Sometimes solutions will be obtained even when a flag is False because the 

expression could be factored. In the following example, the equation can 

be factored as the product of a linear and a quadratic factor so explicit 

solutions (which did not require solving a cubic expression) are obtained: 

 

>>> eq = x**3 + 3*x**2 + x - 1 

>>> solve(eq, cubics=False) 

[-1, -1 + sqrt(2), -sqrt(2) - 1] 

 

Solving equations involving radicals 

------------------------------------ 

 

Because of SymPy's use of the principle root (issue #8789), some solutions 

to radical equations will be missed unless check=False: 

 

>>> from sympy import root 

>>> eq = root(x**3 - 3*x**2, 3) + 1 - x 

>>> solve(eq) 

[] 

>>> solve(eq, check=False) 

[1/3] 

 

In the above example there is only a single solution to the 

equation. Other expressions will yield spurious roots which 

must be checked manually; roots which give a negative argument 

to odd-powered radicals will also need special checking: 

 

>>> from sympy import real_root, S 

>>> eq = root(x, 3) - root(x, 5) + S(1)/7 

>>> solve(eq) # this gives 2 solutions but misses a 3rd 

[CRootOf(7*_p**5 - 7*_p**3 + 1, 1)**15, 

CRootOf(7*_p**5 - 7*_p**3 + 1, 2)**15] 

>>> sol = solve(eq, check=False) 

>>> [abs(eq.subs(x,i).n(2)) for i in sol] 

[0.48, 0.e-110, 0.e-110, 0.052, 0.052] 

 

The first solution is negative so real_root must be used to see 

that it satisfies the expression: 

 

>>> abs(real_root(eq.subs(x, sol[0])).n(2)) 

0.e-110 

 

If the roots of the equation are not real then more care will be 

necessary to find the roots, especially for higher order equations. 

Consider the following expression: 

 

>>> expr = root(x, 3) - root(x, 5) 

 

We will construct a known value for this expression at x = 3 by selecting 

the 1-th root for each radical: 

 

>>> expr1 = root(x, 3, 1) - root(x, 5, 1) 

>>> v = expr1.subs(x, -3) 

 

The solve function is unable to find any exact roots to this equation: 

 

>>> eq = Eq(expr, v); eq1 = Eq(expr1, v) 

>>> solve(eq, check=False), solve(eq1, check=False) 

([], []) 

 

The function unrad, however, can be used to get a form of the equation for 

which numerical roots can be found: 

 

>>> from sympy.solvers.solvers import unrad 

>>> from sympy import nroots 

>>> e, (p, cov) = unrad(eq) 

>>> pvals = nroots(e) 

>>> inversion = solve(cov, x)[0] 

>>> xvals = [inversion.subs(p, i) for i in pvals] 

 

Although eq or eq1 could have been used to find xvals, the solution can 

only be verified with expr1: 

 

>>> z = expr - v 

>>> [xi.n(chop=1e-9) for xi in xvals if abs(z.subs(x, xi).n()) < 1e-9] 

[] 

>>> z1 = expr1 - v 

>>> [xi.n(chop=1e-9) for xi in xvals if abs(z1.subs(x, xi).n()) < 1e-9] 

[-3.0] 

 

See Also 

======== 

 

- rsolve() for solving recurrence relationships 

- dsolve() for solving differential equations 

 

""" 

# keeping track of how f was passed since if it is a list 

# a dictionary of results will be returned. 

########################################################################### 

 

def _sympified_list(w): 

return list(map(sympify, w if iterable(w) else [w])) 

bare_f = not iterable(f) 

ordered_symbols = (symbols and 

symbols[0] and 

(isinstance(symbols[0], Symbol) or 

is_sequence(symbols[0], 

include=GeneratorType) 

) 

) 

f, symbols = (_sympified_list(w) for w in [f, symbols]) 

 

implicit = flags.get('implicit', False) 

 

# preprocess symbol(s) 

########################################################################### 

if not symbols: 

# get symbols from equations 

symbols = set().union(*[fi.free_symbols for fi in f]) 

if len(symbols) < len(f): 

for fi in f: 

pot = preorder_traversal(fi) 

for p in pot: 

if isinstance(p, AppliedUndef): 

flags['dict'] = True # better show symbols 

symbols.add(p) 

pot.skip() # don't go any deeper 

symbols = list(symbols) 

 

ordered_symbols = False 

elif len(symbols) == 1 and iterable(symbols[0]): 

symbols = symbols[0] 

 

# remove symbols the user is not interested in 

exclude = flags.pop('exclude', set()) 

if exclude: 

if isinstance(exclude, Expr): 

exclude = [exclude] 

exclude = set().union(*[e.free_symbols for e in sympify(exclude)]) 

symbols = [s for s in symbols if s not in exclude] 

 

 

# preprocess equation(s) 

########################################################################### 

for i, fi in enumerate(f): 

if isinstance(fi, (Equality, Unequality)): 

if 'ImmutableDenseMatrix' in [type(a).__name__ for a in fi.args]: 

fi = fi.lhs - fi.rhs 

else: 

args = fi.args 

if args[1] in (S.true, S.false): 

args = args[1], args[0] 

L, R = args 

if L in (S.false, S.true): 

if isinstance(fi, Unequality): 

L = ~L 

if R.is_Relational: 

fi = ~R if L is S.false else R 

elif R.is_Symbol: 

return L 

elif R.is_Boolean and (~R).is_Symbol: 

return ~L 

else: 

raise NotImplementedError(filldedent(''' 

Unanticipated argument of Eq when other arg 

is True or False. 

''')) 

else: 

fi = Add(fi.lhs, -fi.rhs, evaluate=False) 

f[i] = fi 

 

if isinstance(fi, (bool, BooleanAtom)) or fi.is_Relational: 

return reduce_inequalities(f, symbols=symbols) 

 

if isinstance(fi, Poly): 

f[i] = fi.as_expr() 

 

# rewrite hyperbolics in terms of exp 

f[i] = f[i].replace(lambda w: isinstance(w, HyperbolicFunction), 

lambda w: w.rewrite(exp)) 

 

# if we have a Matrix, we need to iterate over its elements again 

if f[i].is_Matrix: 

bare_f = False 

f.extend(list(f[i])) 

f[i] = S.Zero 

 

# if we can split it into real and imaginary parts then do so 

freei = f[i].free_symbols 

if freei and all(s.is_real or s.is_imaginary for s in freei): 

fr, fi = f[i].as_real_imag() 

# accept as long as new re, im, arg or atan2 are not introduced 

had = f[i].atoms(re, im, arg, atan2) 

if fr and fi and fr != fi and not any( 

i.atoms(re, im, arg, atan2) - had for i in (fr, fi)): 

if bare_f: 

bare_f = False 

f[i: i + 1] = [fr, fi] 

 

# real/imag handling ----------------------------- 

w = Dummy('w') 

piece = Lambda(w, Piecewise((w, Ge(w, 0)), (-w, True))) 

for i, fi in enumerate(f): 

# Abs 

reps = [] 

for a in fi.atoms(Abs): 

if not a.has(*symbols): 

continue 

if a.args[0].is_real is None: 

raise NotImplementedError('solving %s when the argument ' 

'is not real or imaginary.' % a) 

reps.append((a, piece(a.args[0]) if a.args[0].is_real else \ 

piece(a.args[0]*S.ImaginaryUnit))) 

fi = fi.subs(reps) 

 

# arg 

_arg = [a for a in fi.atoms(arg) if a.has(*symbols)] 

fi = fi.xreplace(dict(list(zip(_arg, 

[atan(im(a.args[0])/re(a.args[0])) for a in _arg])))) 

 

# save changes 

f[i] = fi 

 

# see if re(s) or im(s) appear 

irf = [] 

for s in symbols: 

if s.is_real or s.is_imaginary: 

continue # neither re(x) nor im(x) will appear 

# if re(s) or im(s) appear, the auxiliary equation must be present 

if any(fi.has(re(s), im(s)) for fi in f): 

irf.append((s, re(s) + S.ImaginaryUnit*im(s))) 

if irf: 

for s, rhs in irf: 

for i, fi in enumerate(f): 

f[i] = fi.xreplace({s: rhs}) 

f.append(s - rhs) 

symbols.extend([re(s), im(s)]) 

if bare_f: 

bare_f = False 

flags['dict'] = True 

# end of real/imag handling ----------------------------- 

 

symbols = list(uniq(symbols)) 

if not ordered_symbols: 

# we do this to make the results returned canonical in case f 

# contains a system of nonlinear equations; all other cases should 

# be unambiguous 

symbols = sorted(symbols, key=default_sort_key) 

 

# we can solve for non-symbol entities by replacing them with Dummy symbols 

f, symbols, swap_sym = recast_to_symbols(f, symbols) 

 

# this is needed in the next two events 

symset = set(symbols) 

 

# get rid of equations that have no symbols of interest; we don't 

# try to solve them because the user didn't ask and they might be 

# hard to solve; this means that solutions may be given in terms 

# of the eliminated equations e.g. solve((x-y, y-3), x) -> {x: y} 

newf = [] 

for fi in f: 

# let the solver handle equations that.. 

# - have no symbols but are expressions 

# - have symbols of interest 

# - have no symbols of interest but are constant 

# but when an expression is not constant and has no symbols of 

# interest, it can't change what we obtain for a solution from 

# the remaining equations so we don't include it; and if it's 

# zero it can be removed and if it's not zero, there is no 

# solution for the equation set as a whole 

# 

# The reason for doing this filtering is to allow an answer 

# to be obtained to queries like solve((x - y, y), x); without 

# this mod the return value is [] 

ok = False 

if fi.has(*symset): 

ok = True 

else: 

free = fi.free_symbols 

if not free: 

if fi.is_Number: 

if fi.is_zero: 

continue 

return [] 

ok = True 

else: 

if fi.is_constant(): 

ok = True 

if ok: 

newf.append(fi) 

if not newf: 

return [] 

f = newf 

del newf 

 

# mask off any Object that we aren't going to invert: Derivative, 

# Integral, etc... so that solving for anything that they contain will 

# give an implicit solution 

seen = set() 

non_inverts = set() 

for fi in f: 

pot = preorder_traversal(fi) 

for p in pot: 

if not isinstance(p, Expr) or isinstance(p, Piecewise): 

pass 

elif (isinstance(p, bool) or 

not p.args or 

p in symset or 

p.is_Add or p.is_Mul or 

p.is_Pow and not implicit or 

p.is_Function and not implicit) and p.func not in (re, im): 

continue 

elif not p in seen: 

seen.add(p) 

if p.free_symbols & symset: 

non_inverts.add(p) 

else: 

continue 

pot.skip() 

del seen 

non_inverts = dict(list(zip(non_inverts, [Dummy() for d in non_inverts]))) 

f = [fi.subs(non_inverts) for fi in f] 

 

# Both xreplace and subs are needed below: xreplace to force substitution 

# inside Derivative, subs to handle non-straightforward substitutions 

non_inverts = [(v, k.xreplace(swap_sym).subs(swap_sym)) for k, v in non_inverts.items()] 

 

# rationalize Floats 

floats = False 

if flags.get('rational', True) is not False: 

for i, fi in enumerate(f): 

if fi.has(Float): 

floats = True 

f[i] = nsimplify(fi, rational=True) 

 

# Any embedded piecewise functions need to be brought out to the 

# top level so that the appropriate strategy gets selected. 

# However, this is necessary only if one of the piecewise 

# functions depends on one of the symbols we are solving for. 

def _has_piecewise(e): 

if e.is_Piecewise: 

return e.has(*symbols) 

return any([_has_piecewise(a) for a in e.args]) 

for i, fi in enumerate(f): 

if _has_piecewise(fi): 

f[i] = piecewise_fold(fi) 

 

# 

# try to get a solution 

########################################################################### 

if bare_f: 

solution = _solve(f[0], *symbols, **flags) 

else: 

solution = _solve_system(f, symbols, **flags) 

 

# 

# postprocessing 

########################################################################### 

# Restore masked-off objects 

if non_inverts: 

 

def _do_dict(solution): 

return dict([(k, v.subs(non_inverts)) for k, v in 

solution.items()]) 

for i in range(1): 

if isinstance(solution, dict): 

solution = _do_dict(solution) 

break 

elif solution and isinstance(solution, list): 

if isinstance(solution[0], dict): 

solution = [_do_dict(s) for s in solution] 

break 

elif isinstance(solution[0], tuple): 

solution = [tuple([v.subs(non_inverts) for v in s]) for s 

in solution] 

break 

else: 

solution = [v.subs(non_inverts) for v in solution] 

break 

elif not solution: 

break 

else: 

raise NotImplementedError(filldedent(''' 

no handling of %s was implemented''' % solution)) 

 

# Restore original "symbols" if a dictionary is returned. 

# This is not necessary for 

# - the single univariate equation case 

# since the symbol will have been removed from the solution; 

# - the nonlinear poly_system since that only supports zero-dimensional 

# systems and those results come back as a list 

# 

# ** unless there were Derivatives with the symbols, but those were handled 

# above. 

if swap_sym: 

symbols = [swap_sym.get(k, k) for k in symbols] 

if isinstance(solution, dict): 

solution = dict([(swap_sym.get(k, k), v.subs(swap_sym)) 

for k, v in solution.items()]) 

elif solution and isinstance(solution, list) and isinstance(solution[0], dict): 

for i, sol in enumerate(solution): 

solution[i] = dict([(swap_sym.get(k, k), v.subs(swap_sym)) 

for k, v in sol.items()]) 

 

# undo the dictionary solutions returned when the system was only partially 

# solved with poly-system if all symbols are present 

if ( 

not flags.get('dict', False) and 

solution and 

ordered_symbols and 

not isinstance(solution, dict) and 

all(isinstance(sol, dict) for sol in solution) 

): 

solution = [tuple([r.get(s, s).subs(r) for s in symbols]) 

for r in solution] 

 

# Get assumptions about symbols, to filter solutions. 

# Note that if assumptions about a solution can't be verified, it is still 

# returned. 

check = flags.get('check', True) 

 

# restore floats 

if floats and solution and flags.get('rational', None) is None: 

solution = nfloat(solution, exponent=False) 

 

if check and solution: # assumption checking 

 

warn = flags.get('warn', False) 

got_None = [] # solutions for which one or more symbols gave None 

no_False = [] # solutions for which no symbols gave False 

if isinstance(solution, tuple): 

# this has already been checked and is in as_set form 

return solution 

elif isinstance(solution, list): 

if isinstance(solution[0], tuple): 

for sol in solution: 

for symb, val in zip(symbols, sol): 

test = check_assumptions(val, **symb.assumptions0) 

if test is False: 

break 

if test is None: 

got_None.append(sol) 

else: 

no_False.append(sol) 

elif isinstance(solution[0], dict): 

for sol in solution: 

a_None = False 

for symb, val in sol.items(): 

test = check_assumptions(val, **symb.assumptions0) 

if test: 

continue 

if test is False: 

break 

a_None = True 

else: 

no_False.append(sol) 

if a_None: 

got_None.append(sol) 

else: # list of expressions 

for sol in solution: 

test = check_assumptions(sol, **symbols[0].assumptions0) 

if test is False: 

continue 

no_False.append(sol) 

if test is None: 

got_None.append(sol) 

 

elif isinstance(solution, dict): 

a_None = False 

for symb, val in solution.items(): 

test = check_assumptions(val, **symb.assumptions0) 

if test: 

continue 

if test is False: 

no_False = None 

break 

a_None = True 

else: 

no_False = solution 

if a_None: 

got_None.append(solution) 

 

elif isinstance(solution, (Relational, And, Or)): 

if len(symbols) != 1: 

raise ValueError("Length should be 1") 

if warn and symbols[0].assumptions0: 

warnings.warn(filldedent(""" 

\tWarning: assumptions about variable '%s' are 

not handled currently.""" % symbols[0])) 

# TODO: check also variable assumptions for inequalities 

 

else: 

raise TypeError('Unrecognized solution') # improve the checker 

 

solution = no_False 

if warn and got_None: 

warnings.warn(filldedent(""" 

\tWarning: assumptions concerning following solution(s) 

can't be checked:""" + '\n\t' + 

', '.join(str(s) for s in got_None))) 

 

# 

# done 

########################################################################### 

 

as_dict = flags.get('dict', False) 

as_set = flags.get('set', False) 

 

if not as_set and isinstance(solution, list): 

# Make sure that a list of solutions is ordered in a canonical way. 

solution.sort(key=default_sort_key) 

 

if not as_dict and not as_set: 

return solution or [] 

 

# return a list of mappings or [] 

if not solution: 

solution = [] 

else: 

if isinstance(solution, dict): 

solution = [solution] 

elif iterable(solution[0]): 

solution = [dict(list(zip(symbols, s))) for s in solution] 

elif isinstance(solution[0], dict): 

pass 

else: 

if len(symbols) != 1: 

raise ValueError("Length should be 1") 

solution = [{symbols[0]: s} for s in solution] 

if as_dict: 

return solution 

assert as_set 

if not solution: 

return [], set() 

k = list(ordered(solution[0].keys())) 

return k, {tuple([s[ki] for ki in k]) for s in solution} 

 

 

def _solve(f, *symbols, **flags): 

"""Return a checked solution for f in terms of one or more of the 

symbols. A list should be returned except for the case when a linear 

undetermined-coefficients equation is encountered (in which case 

a dictionary is returned). 

 

If no method is implemented to solve the equation, a NotImplementedError 

will be raised. In the case that conversion of an expression to a Poly 

gives None a ValueError will be raised.""" 

 

not_impl_msg = "No algorithms are implemented to solve equation %s" 

 

if len(symbols) != 1: 

soln = None 

free = f.free_symbols 

ex = free - set(symbols) 

if len(ex) != 1: 

ind, dep = f.as_independent(*symbols) 

ex = ind.free_symbols & dep.free_symbols 

if len(ex) == 1: 

ex = ex.pop() 

try: 

# soln may come back as dict, list of dicts or tuples, or 

# tuple of symbol list and set of solution tuples 

soln = solve_undetermined_coeffs(f, symbols, ex, **flags) 

except NotImplementedError: 

pass 

if soln: 

if flags.get('simplify', True): 

if isinstance(soln, dict): 

for k in soln: 

soln[k] = simplify(soln[k]) 

elif isinstance(soln, list): 

if isinstance(soln[0], dict): 

for d in soln: 

for k in d: 

d[k] = simplify(d[k]) 

elif isinstance(soln[0], tuple): 

soln = [tuple(simplify(i) for i in j) for j in soln] 

else: 

raise TypeError('unrecognized args in list') 

elif isinstance(soln, tuple): 

sym, sols = soln 

soln = sym, {tuple(simplify(i) for i in j) for j in sols} 

else: 

raise TypeError('unrecognized solution type') 

return soln 

# find first successful solution 

failed = [] 

got_s = set([]) 

result = [] 

for s in symbols: 

xi, v = solve_linear(f, symbols=[s]) 

if xi == s: 

# no need to check but we should simplify if desired 

if flags.get('simplify', True): 

v = simplify(v) 

vfree = v.free_symbols 

if got_s and any([ss in vfree for ss in got_s]): 

# sol depends on previously solved symbols: discard it 

continue 

got_s.add(xi) 

result.append({xi: v}) 

elif xi: # there might be a non-linear solution if xi is not 0 

failed.append(s) 

if not failed: 

return result 

for s in failed: 

try: 

soln = _solve(f, s, **flags) 

for sol in soln: 

if got_s and any([ss in sol.free_symbols for ss in got_s]): 

# sol depends on previously solved symbols: discard it 

continue 

got_s.add(s) 

result.append({s: sol}) 

except NotImplementedError: 

continue 

if got_s: 

return result 

else: 

raise NotImplementedError(not_impl_msg % f) 

symbol = symbols[0] 

 

# /!\ capture this flag then set it to False so that no checking in 

# recursive calls will be done; only the final answer is checked 

checkdens = check = flags.pop('check', True) 

flags['check'] = False 

 

# build up solutions if f is a Mul 

if f.is_Mul: 

result = set() 

for m in f.args: 

if m in set([S.NegativeInfinity, S.ComplexInfinity, S.Infinity]): 

result = set() 

break 

soln = _solve(m, symbol, **flags) 

result.update(set(soln)) 

result = list(result) 

if check: 

# all solutions have been checked but now we must 

# check that the solutions do not set denominators 

# in any factor to zero 

dens = _simple_dens(f, symbols) 

result = [s for s in result if 

all(not checksol(den, {symbol: s}, **flags) for den in 

dens)] 

# set flags for quick exit at end 

check = False 

flags['simplify'] = False 

 

elif f.is_Piecewise: 

result = set() 

for i, (expr, cond) in enumerate(f.args): 

if expr.is_zero: 

raise NotImplementedError( 

'solve cannot represent interval solutions') 

candidates = _solve(expr, symbol, **flags) 

# the explicit condition for this expr is the current cond 

# and none of the previous conditions 

args = [~c for _, c in f.args[:i]] + [cond] 

cond = And(*args) 

for candidate in candidates: 

if candidate in result: 

# an unconditional value was already there 

continue 

try: 

v = cond.subs(symbol, candidate) 

try: 

# unconditionally take the simplification of v 

v = v._eval_simpify( 

ratio=2, measure=lambda x: 1) 

except AttributeError: 

pass 

except TypeError: 

# incompatible type with condition(s) 

continue 

if v == False: 

continue 

result.add(Piecewise( 

(candidate, v), 

(S.NaN, True))) 

# the solutions need not be checked again since they 

# were checked in finding the solutions for each piece 

check = False 

else: 

# first see if it really depends on symbol and whether there 

# is only a linear solution 

f_num, sol = solve_linear(f, symbols=symbols) 

if f_num is S.Zero or sol is S.NaN: 

return [] 

elif f_num.is_Symbol: 

# no need to check but simplify if desired 

if flags.get('simplify', True): 

sol = simplify(sol) 

return [sol] 

 

result = False # no solution was obtained 

msg = '' # there is no failure message 

 

# Poly is generally robust enough to convert anything to 

# a polynomial and tell us the different generators that it 

# contains, so we will inspect the generators identified by 

# polys to figure out what to do. 

 

# try to identify a single generator that will allow us to solve this 

# as a polynomial, followed (perhaps) by a change of variables if the 

# generator is not a symbol 

 

try: 

poly = Poly(f_num) 

if poly is None: 

raise ValueError('could not convert %s to Poly' % f_num) 

except GeneratorsNeeded: 

simplified_f = simplify(f_num) 

if simplified_f != f_num: 

return _solve(simplified_f, symbol, **flags) 

raise ValueError('expression appears to be a constant') 

 

gens = [g for g in poly.gens if g.has(symbol)] 

 

def _as_base_q(x): 

"""Return (b**e, q) for x = b**(p*e/q) where p/q is the leading 

Rational of the exponent of x, e.g. exp(-2*x/3) -> (exp(x), 3) 

""" 

b, e = x.as_base_exp() 

if e.is_Rational: 

return b, e.q 

if not e.is_Mul: 

return x, 1 

c, ee = e.as_coeff_Mul() 

if c.is_Rational and c is not S.One: # c could be a Float 

return b**ee, c.q 

return x, 1 

 

if len(gens) > 1: 

# If there is more than one generator, it could be that the 

# generators have the same base but different powers, e.g. 

# >>> Poly(exp(x) + 1/exp(x)) 

# Poly(exp(-x) + exp(x), exp(-x), exp(x), domain='ZZ') 

# 

# If unrad was not disabled then there should be no rational 

# exponents appearing as in 

# >>> Poly(sqrt(x) + sqrt(sqrt(x))) 

# Poly(sqrt(x) + x**(1/4), sqrt(x), x**(1/4), domain='ZZ') 

 

bases, qs = list(zip(*[_as_base_q(g) for g in gens])) 

bases = set(bases) 

 

if len(bases) > 1 or not all(q == 1 for q in qs): 

funcs = set(b for b in bases if b.is_Function) 

 

trig = set([_ for _ in funcs if 

isinstance(_, TrigonometricFunction)]) 

other = funcs - trig 

if not other and len(funcs.intersection(trig)) > 1: 

newf = TR1(f_num).rewrite(tan) 

if newf != f_num: 

result = _solve(newf, symbol, **flags) 

 

# just a simple case - see if replacement of single function 

# clears all symbol-dependent functions, e.g. 

# log(x) - log(log(x) - 1) - 3 can be solved even though it has 

# two generators. 

 

if result is False and funcs: 

funcs = list(ordered(funcs)) # put shallowest function first 

f1 = funcs[0] 

t = Dummy('t') 

# perform the substitution 

ftry = f_num.subs(f1, t) 

 

# if no Functions left, we can proceed with usual solve 

if not ftry.has(symbol): 

cv_sols = _solve(ftry, t, **flags) 

cv_inv = _solve(t - f1, symbol, **flags)[0] 

sols = list() 

for sol in cv_sols: 

sols.append(cv_inv.subs(t, sol)) 

result = list(ordered(sols)) 

 

if result is False: 

msg = 'multiple generators %s' % gens 

 

else: 

# e.g. case where gens are exp(x), exp(-x) 

u = bases.pop() 

t = Dummy('t') 

inv = _solve(u - t, symbol, **flags) 

if isinstance(u, (Pow, exp)): 

# this will be resolved by factor in _tsolve but we might 

# as well try a simple expansion here to get things in 

# order so something like the following will work now without 

# having to factor: 

# 

# >>> eq = (exp(I*(-x-2))+exp(I*(x+2))) 

# >>> eq.subs(exp(x),y) # fails 

# exp(I*(-x - 2)) + exp(I*(x + 2)) 

# >>> eq.expand().subs(exp(x),y) # works 

# y**I*exp(2*I) + y**(-I)*exp(-2*I) 

def _expand(p): 

b, e = p.as_base_exp() 

e = expand_mul(e) 

return expand_power_exp(b**e) 

ftry = f_num.replace( 

lambda w: w.is_Pow or isinstance(w, exp), 

_expand).subs(u, t) 

if not ftry.has(symbol): 

soln = _solve(ftry, t, **flags) 

sols = list() 

for sol in soln: 

for i in inv: 

sols.append(i.subs(t, sol)) 

result = list(ordered(sols)) 

 

elif len(gens) == 1: 

 

# There is only one generator that we are interested in, but 

# there may have been more than one generator identified by 

# polys (e.g. for symbols other than the one we are interested 

# in) so recast the poly in terms of our generator of interest. 

# Also use composite=True with f_num since Poly won't update 

# poly as documented in issue 8810. 

 

poly = Poly(f_num, gens[0], composite=True) 

 

# if we aren't on the tsolve-pass, use roots 

if not flags.pop('tsolve', False): 

soln = None 

deg = poly.degree() 

flags['tsolve'] = True 

solvers = dict([(k, flags.get(k, True)) for k in 

('cubics', 'quartics', 'quintics')]) 

soln = roots(poly, **solvers) 

if sum(soln.values()) < deg: 

# e.g. roots(32*x**5 + 400*x**4 + 2032*x**3 + 

# 5000*x**2 + 6250*x + 3189) -> {} 

# so all_roots is used and RootOf instances are 

# returned *unless* the system is multivariate 

# or high-order EX domain. 

try: 

soln = poly.all_roots() 

except NotImplementedError: 

if not flags.get('incomplete', True): 

raise NotImplementedError( 

filldedent(''' 

Neither high-order multivariate polynomials 

nor sorting of EX-domain polynomials is supported. 

If you want to see any results, pass keyword incomplete=True to 

solve; to see numerical values of roots 

for univariate expressions, use nroots. 

''')) 

else: 

pass 

else: 

soln = list(soln.keys()) 

 

if soln is not None: 

u = poly.gen 

if u != symbol: 

try: 

t = Dummy('t') 

iv = _solve(u - t, symbol, **flags) 

soln = list(ordered({i.subs(t, s) for i in iv for s in soln})) 

except NotImplementedError: 

# perhaps _tsolve can handle f_num 

soln = None 

else: 

check = False # only dens need to be checked 

if soln is not None: 

if len(soln) > 2: 

# if the flag wasn't set then unset it since high-order 

# results are quite long. Perhaps one could base this 

# decision on a certain critical length of the 

# roots. In addition, wester test M2 has an expression 

# whose roots can be shown to be real with the 

# unsimplified form of the solution whereas only one of 

# the simplified forms appears to be real. 

flags['simplify'] = flags.get('simplify', False) 

result = soln 

 

# fallback if above fails 

# ----------------------- 

if result is False: 

# try unrad 

if flags.pop('_unrad', True): 

try: 

u = unrad(f_num, symbol) 

except (ValueError, NotImplementedError): 

u = False 

if u: 

eq, cov = u 

if cov: 

isym, ieq = cov 

inv = _solve(ieq, symbol, **flags)[0] 

rv = {inv.subs(isym, xi) for xi in _solve(eq, isym, **flags)} 

else: 

try: 

rv = set(_solve(eq, symbol, **flags)) 

except NotImplementedError: 

rv = None 

if rv is not None: 

result = list(ordered(rv)) 

# if the flag wasn't set then unset it since unrad results 

# can be quite long or of very high order 

flags['simplify'] = flags.get('simplify', False) 

else: 

pass # for coverage 

 

# try _tsolve 

if result is False: 

flags.pop('tsolve', None) # allow tsolve to be used on next pass 

try: 

soln = _tsolve(f_num, symbol, **flags) 

if soln is not None: 

result = soln 

except PolynomialError: 

pass 

# ----------- end of fallback ---------------------------- 

 

if result is False: 

raise NotImplementedError('\n'.join([msg, not_impl_msg % f])) 

 

if flags.get('simplify', True): 

result = list(map(simplify, result)) 

# we just simplified the solution so we now set the flag to 

# False so the simplification doesn't happen again in checksol() 

flags['simplify'] = False 

 

if checkdens: 

# reject any result that makes any denom. affirmatively 0; 

# if in doubt, keep it 

dens = _simple_dens(f, symbols) 

result = [s for s in result if 

all(not checksol(d, {symbol: s}, **flags) 

for d in dens)] 

if check: 

# keep only results if the check is not False 

result = [r for r in result if 

checksol(f_num, {symbol: r}, **flags) is not False] 

return result 

 

 

def _solve_system(exprs, symbols, **flags): 

if not exprs: 

return [] 

 

polys = [] 

dens = set() 

failed = [] 

result = False 

linear = False 

manual = flags.get('manual', False) 

checkdens = check = flags.get('check', True) 

 

for j, g in enumerate(exprs): 

dens.update(_simple_dens(g, symbols)) 

i, d = _invert(g, *symbols) 

g = d - i 

g = g.as_numer_denom()[0] 

if manual: 

failed.append(g) 

continue 

 

poly = g.as_poly(*symbols, extension=True) 

 

if poly is not None: 

polys.append(poly) 

else: 

failed.append(g) 

 

if not polys: 

solved_syms = [] 

else: 

if all(p.is_linear for p in polys): 

n, m = len(polys), len(symbols) 

matrix = zeros(n, m + 1) 

 

for i, poly in enumerate(polys): 

for monom, coeff in poly.terms(): 

try: 

j = monom.index(1) 

matrix[i, j] = coeff 

except ValueError: 

matrix[i, m] = -coeff 

 

# returns a dictionary ({symbols: values}) or None 

if flags.pop('particular', False): 

result = minsolve_linear_system(matrix, *symbols, **flags) 

else: 

result = solve_linear_system(matrix, *symbols, **flags) 

if failed: 

if result: 

solved_syms = list(result.keys()) 

else: 

solved_syms = [] 

else: 

linear = True 

 

else: 

if len(symbols) > len(polys): 

from sympy.utilities.iterables import subsets 

 

free = set().union(*[p.free_symbols for p in polys]) 

free = list(ordered(free.intersection(symbols))) 

got_s = set() 

result = [] 

for syms in subsets(free, len(polys)): 

try: 

# returns [] or list of tuples of solutions for syms 

res = solve_poly_system(polys, *syms) 

if res: 

for r in res: 

skip = False 

for r1 in r: 

if got_s and any([ss in r1.free_symbols 

for ss in got_s]): 

# sol depends on previously 

# solved symbols: discard it 

skip = True 

if not skip: 

got_s.update(syms) 

result.extend([dict(list(zip(syms, r)))]) 

except NotImplementedError: 

pass 

if got_s: 

solved_syms = list(got_s) 

else: 

raise NotImplementedError('no valid subset found') 

else: 

try: 

result = solve_poly_system(polys, *symbols) 

solved_syms = symbols 

except NotImplementedError: 

failed.extend([g.as_expr() for g in polys]) 

solved_syms = [] 

if result: 

# we don't know here if the symbols provided were given 

# or not, so let solve resolve that. A list of dictionaries 

# is going to always be returned from here. 

# 

result = [dict(list(zip(solved_syms, r))) for r in result] 

 

if result: 

if isinstance(result, dict): 

result = [result] 

else: 

result = [{}] 

 

if failed: 

# For each failed equation, see if we can solve for one of the 

# remaining symbols from that equation. If so, we update the 

# solution set and continue with the next failed equation, 

# repeating until we are done or we get an equation that can't 

# be solved. 

def _ok_syms(e, sort=False): 

rv = (e.free_symbols - solved_syms) & legal 

if sort: 

rv = list(rv) 

rv.sort(key=default_sort_key) 

return rv 

 

solved_syms = set(solved_syms) # set of symbols we have solved for 

legal = set(symbols) # what we are interested in 

 

# sort so equation with the fewest potential symbols is first 

for eq in ordered(failed, lambda _: len(_ok_syms(_))): 

u = Dummy() # used in solution checking 

newresult = [] 

bad_results = [] 

got_s = set() 

hit = False 

for r in result: 

# update eq with everything that is known so far 

eq2 = eq.subs(r) 

# if check is True then we see if it satisfies this 

# equation, otherwise we just accept it 

if check and r: 

b = checksol(u, u, eq2, minimal=True) 

if b is not None: 

# this solution is sufficient to know whether 

# it is valid or not so we either accept or 

# reject it, then continue 

if b: 

newresult.append(r) 

else: 

bad_results.append(r) 

continue 

# search for a symbol amongst those available that 

# can be solved for 

ok_syms = _ok_syms(eq2, sort=True) 

if not ok_syms: 

if r: 

newresult.append(r) 

break # skip as it's independent of desired symbols 

for s in ok_syms: 

try: 

soln = _solve(eq2, s, **flags) 

except NotImplementedError: 

continue 

# put each solution in r and append the now-expanded 

# result in the new result list; use copy since the 

# solution for s in being added in-place 

for sol in soln: 

if got_s and any([ss in sol.free_symbols for ss in got_s]): 

# sol depends on previously solved symbols: discard it 

continue 

rnew = r.copy() 

for k, v in r.items(): 

rnew[k] = v.subs(s, sol) 

# and add this new solution 

rnew[s] = sol 

newresult.append(rnew) 

hit = True 

got_s.add(s) 

if not hit: 

raise NotImplementedError('could not solve %s' % eq2) 

else: 

result = newresult 

for b in bad_results: 

if b in result: 

result.remove(b) 

 

default_simplify = bool(failed) # rely on system-solvers to simplify 

if flags.get('simplify', default_simplify): 

for r in result: 

for k in r: 

r[k] = simplify(r[k]) 

flags['simplify'] = False # don't need to do so in checksol now 

 

if checkdens: 

result = [r for r in result 

if not any(checksol(d, r, **flags) for d in dens)] 

 

if check and not linear: 

result = [r for r in result 

if not any(checksol(e, r, **flags) is False for e in exprs)] 

 

result = [r for r in result if r] 

if linear and result: 

result = result[0] 

return result 

 

 

def solve_linear(lhs, rhs=0, symbols=[], exclude=[]): 

r""" Return a tuple derived from f = lhs - rhs that is one of 

the following: 

 

(0, 1) meaning that ``f`` is independent of the symbols in 

``symbols`` that aren't in ``exclude``, e.g:: 

 

>>> from sympy.solvers.solvers import solve_linear 

>>> from sympy.abc import x, y, z 

>>> from sympy import cos, sin 

>>> eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0 

>>> solve_linear(eq) 

(0, 1) 

>>> eq = cos(x)**2 + sin(x)**2 # = 1 

>>> solve_linear(eq) 

(0, 1) 

>>> solve_linear(x, exclude=[x]) 

(0, 1) 

 

(0, 0) meaning that there is no solution to the equation 

amongst the symbols given. 

 

(If the first element of the tuple is not zero then 

the function is guaranteed to be dependent on a symbol 

in ``symbols``.) 

 

(symbol, solution) where symbol appears linearly in the 

numerator of ``f``, is in ``symbols`` (if given) and is 

not in ``exclude`` (if given). No simplification is done 

to ``f`` other than a ``mul=True`` expansion, so the 

solution will correspond strictly to a unique solution. 

 

``(n, d)`` where ``n`` and ``d`` are the numerator and 

denominator of ``f`` when the numerator was not linear 

in any symbol of interest; ``n`` will never be a symbol 

unless a solution for that symbol was found (in which case 

the second element is the solution, not the denominator). 

 

 

Examples 

======== 

 

>>> from sympy.core.power import Pow 

>>> from sympy.polys.polytools import cancel 

 

The variable ``x`` appears as a linear variable in each of the 

following: 

 

>>> solve_linear(x + y**2) 

(x, -y**2) 

>>> solve_linear(1/x - y**2) 

(x, y**(-2)) 

 

When not linear in x or y then the numerator and denominator are returned. 

 

>>> solve_linear(x**2/y**2 - 3) 

(x**2 - 3*y**2, y**2) 

 

If the numerator of the expression is a symbol then (0, 0) is 

returned if the solution for that symbol would have set any 

denominator to 0: 

 

>>> eq = 1/(1/x - 2) 

>>> eq.as_numer_denom() 

(x, -2*x + 1) 

>>> solve_linear(eq) 

(0, 0) 

 

But automatic rewriting may cause a symbol in the denominator to 

appear in the numerator so a solution will be returned: 

 

>>> (1/x)**-1 

x 

>>> solve_linear((1/x)**-1) 

(x, 0) 

 

Use an unevaluated expression to avoid this: 

 

>>> solve_linear(Pow(1/x, -1, evaluate=False)) 

(0, 0) 

 

If ``x`` is allowed to cancel in the following expression, then it 

appears to be linear in ``x``, but this sort of cancellation is not 

done by ``solve_linear`` so the solution will always satisfy the 

original expression without causing a division by zero error. 

 

>>> eq = x**2*(1/x - z**2/x) 

>>> solve_linear(cancel(eq)) 

(x, 0) 

>>> solve_linear(eq) 

(x**2*(-z**2 + 1), x) 

 

A list of symbols for which a solution is desired may be given: 

 

>>> solve_linear(x + y + z, symbols=[y]) 

(y, -x - z) 

 

A list of symbols to ignore may also be given: 

 

>>> solve_linear(x + y + z, exclude=[x]) 

(y, -x - z) 

 

(A solution for ``y`` is obtained because it is the first variable 

from the canonically sorted list of symbols that had a linear 

solution.) 

 

""" 

if isinstance(lhs, Equality): 

if rhs: 

raise ValueError(filldedent(''' 

If lhs is an Equality, rhs must be 0 but was %s''' % rhs)) 

rhs = lhs.rhs 

lhs = lhs.lhs 

dens = None 

eq = lhs - rhs 

n, d = eq.as_numer_denom() 

if not n: 

return S.Zero, S.One 

 

free = n.free_symbols 

if not symbols: 

symbols = free 

else: 

bad = [s for s in symbols if not s.is_Symbol] 

if bad: 

if len(bad) == 1: 

bad = bad[0] 

if len(symbols) == 1: 

eg = 'solve(%s, %s)' % (eq, symbols[0]) 

else: 

eg = 'solve(%s, *%s)' % (eq, list(symbols)) 

raise ValueError(filldedent(''' 

solve_linear only handles symbols, not %s. To isolate 

non-symbols use solve, e.g. >>> %s <<<. 

''' % (bad, eg))) 

symbols = free.intersection(symbols) 

symbols = symbols.difference(exclude) 

if not symbols: 

return S.Zero, S.One 

dfree = d.free_symbols 

 

# derivatives are easy to do but tricky to analyze to see if they 

# are going to disallow a linear solution, so for simplicity we 

# just evaluate the ones that have the symbols of interest 

derivs = defaultdict(list) 

for der in n.atoms(Derivative): 

csym = der.free_symbols & symbols 

for c in csym: 

derivs[c].append(der) 

 

all_zero = True 

for xi in sorted(symbols, key=default_sort_key): # canonical order 

# if there are derivatives in this var, calculate them now 

if isinstance(derivs[xi], list): 

derivs[xi] = {der: der.doit() for der in derivs[xi]} 

newn = n.subs(derivs[xi]) 

dnewn_dxi = newn.diff(xi) 

# dnewn_dxi can be nonzero if it survives differentation by any 

# of its free symbols 

free = dnewn_dxi.free_symbols 

if dnewn_dxi and (not free or any(dnewn_dxi.diff(s) for s in free)): 

all_zero = False 

if dnewn_dxi is S.NaN: 

break 

if xi not in dnewn_dxi.free_symbols: 

vi = -1/dnewn_dxi*(newn.subs(xi, 0)) 

if dens is None: 

dens = _simple_dens(eq, symbols) 

if not any(checksol(di, {xi: vi}, minimal=True) is True 

for di in dens): 

# simplify any trivial integral 

irep = [(i, i.doit()) for i in vi.atoms(Integral) if 

i.function.is_number] 

# do a slight bit of simplification 

vi = expand_mul(vi.subs(irep)) 

return xi, vi 

if all_zero: 

return S.Zero, S.One 

if n.is_Symbol: # no solution for this symbol was found 

return S.Zero, S.Zero 

return n, d 

 

 

def minsolve_linear_system(system, *symbols, **flags): 

r""" 

Find a particular solution to a linear system. 

 

In particular, try to find a solution with the minimal possible number 

of non-zero variables using a naive algorithm with exponential complexity. 

If ``quick=True``, a heuristic is used. 

""" 

quick = flags.get('quick', False) 

# Check if there are any non-zero solutions at all 

s0 = solve_linear_system(system, *symbols, **flags) 

if not s0 or all(v == 0 for v in s0.values()): 

return s0 

if quick: 

# We just solve the system and try to heuristically find a nice 

# solution. 

s = solve_linear_system(system, *symbols) 

def update(determined, solution): 

delete = [] 

for k, v in solution.items(): 

solution[k] = v.subs(determined) 

if not solution[k].free_symbols: 

delete.append(k) 

determined[k] = solution[k] 

for k in delete: 

del solution[k] 

determined = {} 

update(determined, s) 

while s: 

# NOTE sort by default_sort_key to get deterministic result 

k = max((k for k in s.values()), 

key=lambda x: (len(x.free_symbols), default_sort_key(x))) 

x = max(k.free_symbols, key=default_sort_key) 

if len(k.free_symbols) != 1: 

determined[x] = S(0) 

else: 

val = solve(k)[0] 

if val == 0 and all(v.subs(x, val) == 0 for v in s.values()): 

determined[x] = S(1) 

else: 

determined[x] = val 

update(determined, s) 

return determined 

else: 

# We try to select n variables which we want to be non-zero. 

# All others will be assumed zero. We try to solve the modified system. 

# If there is a non-trivial solution, just set the free variables to 

# one. If we do this for increasing n, trying all combinations of 

# variables, we will find an optimal solution. 

# We speed up slightly by starting at one less than the number of 

# variables the quick method manages. 

from itertools import combinations 

from sympy.utilities.misc import debug 

N = len(symbols) 

bestsol = minsolve_linear_system(system, *symbols, quick=True) 

n0 = len([x for x in bestsol.values() if x != 0]) 

for n in range(n0 - 1, 1, -1): 

debug('minsolve: %s' % n) 

thissol = None 

for nonzeros in combinations(list(range(N)), n): 

subm = Matrix([system.col(i).T for i in nonzeros] + [system.col(-1).T]).T 

s = solve_linear_system(subm, *[symbols[i] for i in nonzeros]) 

if s and not all(v == 0 for v in s.values()): 

subs = [(symbols[v], S(1)) for v in nonzeros] 

for k, v in s.items(): 

s[k] = v.subs(subs) 

for sym in symbols: 

if sym not in s: 

if symbols.index(sym) in nonzeros: 

s[sym] = S(1) 

else: 

s[sym] = S(0) 

thissol = s 

break 

if thissol is None: 

break 

bestsol = thissol 

return bestsol 

 

 

def solve_linear_system(system, *symbols, **flags): 

r""" 

Solve system of N linear equations with M variables, which means 

both under- and overdetermined systems are supported. The possible 

number of solutions is zero, one or infinite. Respectively, this 

procedure will return None or a dictionary with solutions. In the 

case of underdetermined systems, all arbitrary parameters are skipped. 

This may cause a situation in which an empty dictionary is returned. 

In that case, all symbols can be assigned arbitrary values. 

 

Input to this functions is a Nx(M+1) matrix, which means it has 

to be in augmented form. If you prefer to enter N equations and M 

unknowns then use `solve(Neqs, *Msymbols)` instead. Note: a local 

copy of the matrix is made by this routine so the matrix that is 

passed will not be modified. 

 

The algorithm used here is fraction-free Gaussian elimination, 

which results, after elimination, in an upper-triangular matrix. 

Then solutions are found using back-substitution. This approach 

is more efficient and compact than the Gauss-Jordan method. 

 

>>> from sympy import Matrix, solve_linear_system 

>>> from sympy.abc import x, y 

 

Solve the following system:: 

 

x + 4 y == 2 

-2 x + y == 14 

 

>>> system = Matrix(( (1, 4, 2), (-2, 1, 14))) 

>>> solve_linear_system(system, x, y) 

{x: -6, y: 2} 

 

A degenerate system returns an empty dictionary. 

 

>>> system = Matrix(( (0,0,0), (0,0,0) )) 

>>> solve_linear_system(system, x, y) 

{} 

 

""" 

do_simplify = flags.get('simplify', True) 

 

if system.rows == system.cols - 1 == len(symbols): 

try: 

# well behaved n-equations and n-unknowns 

inv = inv_quick(system[:, :-1]) 

rv = dict(zip(symbols, inv*system[:, -1])) 

if do_simplify: 

for k, v in rv.items(): 

rv[k] = simplify(v) 

if not all(i.is_zero for i in rv.values()): 

# non-trivial solution 

return rv 

except ValueError: 

pass 

 

matrix = system[:, :] 

syms = list(symbols) 

 

i, m = 0, matrix.cols - 1 # don't count augmentation 

 

while i < matrix.rows: 

if i == m: 

# an overdetermined system 

if any(matrix[i:, m]): 

return None # no solutions 

else: 

# remove trailing rows 

matrix = matrix[:i, :] 

break 

 

if not matrix[i, i]: 

# there is no pivot in current column 

# so try to find one in other columns 

for k in range(i + 1, m): 

if matrix[i, k]: 

break 

else: 

if matrix[i, m]: 

# We need to know if this is always zero or not. We 

# assume that if there are free symbols that it is not 

# identically zero (or that there is more than one way 

# to make this zero). Otherwise, if there are none, this 

# is a constant and we assume that it does not simplify 

# to zero XXX are there better (fast) ways to test this? 

# The .equals(0) method could be used but that can be 

# slow; numerical testing is prone to errors of scaling. 

if not matrix[i, m].free_symbols: 

return None # no solution 

 

# A row of zeros with a non-zero rhs can only be accepted 

# if there is another equivalent row. Any such rows will 

# be deleted. 

nrows = matrix.rows 

rowi = matrix.row(i) 

ip = None 

j = i + 1 

while j < matrix.rows: 

# do we need to see if the rhs of j 

# is a constant multiple of i's rhs? 

rowj = matrix.row(j) 

if rowj == rowi: 

matrix.row_del(j) 

elif rowj[:-1] == rowi[:-1]: 

if ip is None: 

_, ip = rowi[-1].as_content_primitive() 

_, jp = rowj[-1].as_content_primitive() 

if not (simplify(jp - ip) or simplify(jp + ip)): 

matrix.row_del(j) 

 

j += 1 

 

if nrows == matrix.rows: 

# no solution 

return None 

# zero row or was a linear combination of 

# other rows or was a row with a symbolic 

# expression that matched other rows, e.g. [0, 0, x - y] 

# so now we can safely skip it 

matrix.row_del(i) 

if not matrix: 

# every choice of variable values is a solution 

# so we return an empty dict instead of None 

return dict() 

continue 

 

# we want to change the order of columns so 

# the order of variables must also change 

syms[i], syms[k] = syms[k], syms[i] 

matrix.col_swap(i, k) 

 

pivot_inv = S.One/matrix[i, i] 

 

# divide all elements in the current row by the pivot 

matrix.row_op(i, lambda x, _: x * pivot_inv) 

 

for k in range(i + 1, matrix.rows): 

if matrix[k, i]: 

coeff = matrix[k, i] 

 

# subtract from the current row the row containing 

# pivot and multiplied by extracted coefficient 

matrix.row_op(k, lambda x, j: simplify(x - matrix[i, j]*coeff)) 

 

i += 1 

 

# if there weren't any problems, augmented matrix is now 

# in row-echelon form so we can check how many solutions 

# there are and extract them using back substitution 

 

if len(syms) == matrix.rows: 

# this system is Cramer equivalent so there is 

# exactly one solution to this system of equations 

k, solutions = i - 1, {} 

 

while k >= 0: 

content = matrix[k, m] 

 

# run back-substitution for variables 

for j in range(k + 1, m): 

content -= matrix[k, j]*solutions[syms[j]] 

 

if do_simplify: 

solutions[syms[k]] = simplify(content) 

else: 

solutions[syms[k]] = content 

 

k -= 1 

 

return solutions 

elif len(syms) > matrix.rows: 

# this system will have infinite number of solutions 

# dependent on exactly len(syms) - i parameters 

k, solutions = i - 1, {} 

 

while k >= 0: 

content = matrix[k, m] 

 

# run back-substitution for variables 

for j in range(k + 1, i): 

content -= matrix[k, j]*solutions[syms[j]] 

 

# run back-substitution for parameters 

for j in range(i, m): 

content -= matrix[k, j]*syms[j] 

 

if do_simplify: 

solutions[syms[k]] = simplify(content) 

else: 

solutions[syms[k]] = content 

 

k -= 1 

 

return solutions 

else: 

return [] # no solutions 

 

 

def solve_undetermined_coeffs(equ, coeffs, sym, **flags): 

"""Solve equation of a type p(x; a_1, ..., a_k) == q(x) where both 

p, q are univariate polynomials and f depends on k parameters. 

The result of this functions is a dictionary with symbolic 

values of those parameters with respect to coefficients in q. 

 

This functions accepts both Equations class instances and ordinary 

SymPy expressions. Specification of parameters and variable is 

obligatory for efficiency and simplicity reason. 

 

>>> from sympy import Eq 

>>> from sympy.abc import a, b, c, x 

>>> from sympy.solvers import solve_undetermined_coeffs 

 

>>> solve_undetermined_coeffs(Eq(2*a*x + a+b, x), [a, b], x) 

{a: 1/2, b: -1/2} 

 

>>> solve_undetermined_coeffs(Eq(a*c*x + a+b, x), [a, b], x) 

{a: 1/c, b: -1/c} 

 

""" 

if isinstance(equ, Equality): 

# got equation, so move all the 

# terms to the left hand side 

equ = equ.lhs - equ.rhs 

 

equ = cancel(equ).as_numer_denom()[0] 

 

system = list(collect(equ.expand(), sym, evaluate=False).values()) 

 

if not any(equ.has(sym) for equ in system): 

# consecutive powers in the input expressions have 

# been successfully collected, so solve remaining 

# system using Gaussian elimination algorithm 

return solve(system, *coeffs, **flags) 

else: 

return None # no solutions 

 

 

def solve_linear_system_LU(matrix, syms): 

""" 

Solves the augmented matrix system using LUsolve and returns a dictionary 

in which solutions are keyed to the symbols of syms *as ordered*. 

 

The matrix must be invertible. 

 

Examples 

======== 

 

>>> from sympy import Matrix 

>>> from sympy.abc import x, y, z 

>>> from sympy.solvers.solvers import solve_linear_system_LU 

 

>>> solve_linear_system_LU(Matrix([ 

... [1, 2, 0, 1], 

... [3, 2, 2, 1], 

... [2, 0, 0, 1]]), [x, y, z]) 

{x: 1/2, y: 1/4, z: -1/2} 

 

See Also 

======== 

 

sympy.matrices.LUsolve 

 

""" 

if matrix.rows != matrix.cols - 1: 

raise ValueError("Rows should be equal to columns - 1") 

A = matrix[:matrix.rows, :matrix.rows] 

b = matrix[:, matrix.cols - 1:] 

soln = A.LUsolve(b) 

solutions = {} 

for i in range(soln.rows): 

solutions[syms[i]] = soln[i, 0] 

return solutions 

 

 

def det_perm(M): 

"""Return the det(``M``) by using permutations to select factors. 

For size larger than 8 the number of permutations becomes prohibitively 

large, or if there are no symbols in the matrix, it is better to use the 

standard determinant routines, e.g. `M.det()`. 

 

See Also 

======== 

det_minor 

det_quick 

""" 

args = [] 

s = True 

n = M.rows 

try: 

list = M._mat 

except AttributeError: 

list = flatten(M.tolist()) 

for perm in generate_bell(n): 

fac = [] 

idx = 0 

for j in perm: 

fac.append(list[idx + j]) 

idx += n 

term = Mul(*fac) # disaster with unevaluated Mul -- takes forever for n=7 

args.append(term if s else -term) 

s = not s 

return Add(*args) 

 

 

def det_minor(M): 

"""Return the ``det(M)`` computed from minors without 

introducing new nesting in products. 

 

See Also 

======== 

det_perm 

det_quick 

""" 

n = M.rows 

if n == 2: 

return M[0, 0]*M[1, 1] - M[1, 0]*M[0, 1] 

else: 

return sum([(1, -1)[i % 2]*Add(*[M[0, i]*d for d in 

Add.make_args(det_minor(M.minor_submatrix(0, i)))]) 

if M[0, i] else S.Zero for i in range(n)]) 

 

 

def det_quick(M, method=None): 

"""Return ``det(M)`` assuming that either 

there are lots of zeros or the size of the matrix 

is small. If this assumption is not met, then the normal 

Matrix.det function will be used with method = ``method``. 

 

See Also 

======== 

det_minor 

det_perm 

""" 

if any(i.has(Symbol) for i in M): 

if M.rows < 8 and all(i.has(Symbol) for i in M): 

return det_perm(M) 

return det_minor(M) 

else: 

return M.det(method=method) if method else M.det() 

 

 

def inv_quick(M): 

"""Return the inverse of ``M``, assuming that either 

there are lots of zeros or the size of the matrix 

is small. 

""" 

from sympy.matrices import zeros 

if not all(i.is_Number for i in M): 

if not any(i.is_Number for i in M): 

det = lambda _: det_perm(_) 

else: 

det = lambda _: det_minor(_) 

else: 

return M.inv() 

n = M.rows 

d = det(M) 

if d is S.Zero: 

raise ValueError("Matrix det == 0; not invertible.") 

ret = zeros(n) 

s1 = -1 

for i in range(n): 

s = s1 = -s1 

for j in range(n): 

di = det(M.minor_submatrix(i, j)) 

ret[j, i] = s*di/d 

s = -s 

return ret 

 

 

# these are functions that have multiple inverse values per period 

multi_inverses = { 

sin: lambda x: (asin(x), S.Pi - asin(x)), 

cos: lambda x: (acos(x), 2*S.Pi - acos(x)), 

} 

 

 

def _tsolve(eq, sym, **flags): 

""" 

Helper for _solve that solves a transcendental equation with respect 

to the given symbol. Various equations containing powers and logarithms, 

can be solved. 

 

There is currently no guarantee that all solutions will be returned or 

that a real solution will be favored over a complex one. 

 

Either a list of potential solutions will be returned or None will be 

returned (in the case that no method was known to get a solution 

for the equation). All other errors (like the inability to cast an 

expression as a Poly) are unhandled. 

 

Examples 

======== 

 

>>> from sympy import log 

>>> from sympy.solvers.solvers import _tsolve as tsolve 

>>> from sympy.abc import x 

 

>>> tsolve(3**(2*x + 5) - 4, x) 

[-5/2 + log(2)/log(3), (-5*log(3)/2 + log(2) + I*pi)/log(3)] 

 

>>> tsolve(log(x) + 2*x, x) 

[LambertW(2)/2] 

 

""" 

if 'tsolve_saw' not in flags: 

flags['tsolve_saw'] = [] 

if eq in flags['tsolve_saw']: 

return None 

else: 

flags['tsolve_saw'].append(eq) 

 

rhs, lhs = _invert(eq, sym) 

 

if lhs == sym: 

return [rhs] 

try: 

if lhs.is_Add: 

# it's time to try factoring; powdenest is used 

# to try get powers in standard form for better factoring 

f = factor(powdenest(lhs - rhs)) 

if f.is_Mul: 

return _solve(f, sym, **flags) 

if rhs: 

f = logcombine(lhs, force=flags.get('force', True)) 

if f.count(log) != lhs.count(log): 

if isinstance(f, log): 

return _solve(f.args[0] - exp(rhs), sym, **flags) 

return _tsolve(f - rhs, sym) 

 

elif lhs.is_Pow: 

if lhs.exp.is_Integer: 

if lhs - rhs != eq: 

return _solve(lhs - rhs, sym, **flags) 

elif sym not in lhs.exp.free_symbols: 

return _solve(lhs.base - rhs**(1/lhs.exp), sym, **flags) 

elif not rhs and sym in lhs.exp.free_symbols: 

# f(x)**g(x) only has solutions where f(x) == 0 and g(x) != 0 at 

# the same place 

sol_base = _solve(lhs.base, sym, **flags) 

if not sol_base: 

return sol_base # no solutions to remove so return now 

return list(ordered(set(sol_base) - set( 

_solve(lhs.exp, sym, **flags)))) 

elif (rhs is not S.Zero and 

lhs.base.is_positive and 

lhs.exp.is_real): 

return _solve(lhs.exp*log(lhs.base) - log(rhs), sym, **flags) 

elif lhs.base == 0 and rhs == 1: 

return _solve(lhs.exp, sym, **flags) 

 

elif lhs.is_Mul and rhs.is_positive: 

llhs = expand_log(log(lhs)) 

if llhs.is_Add: 

return _solve(llhs - log(rhs), sym, **flags) 

 

elif lhs.is_Function and len(lhs.args) == 1: 

if lhs.func in multi_inverses: 

# sin(x) = 1/3 -> x - asin(1/3) & x - (pi - asin(1/3)) 

soln = [] 

for i in multi_inverses[lhs.func](rhs): 

soln.extend(_solve(lhs.args[0] - i, sym, **flags)) 

return list(ordered(soln)) 

elif lhs.func == LambertW: 

return _solve(lhs.args[0] - rhs*exp(rhs), sym, **flags) 

 

rewrite = lhs.rewrite(exp) 

if rewrite != lhs: 

return _solve(rewrite - rhs, sym, **flags) 

except NotImplementedError: 

pass 

 

# maybe it is a lambert pattern 

if flags.pop('bivariate', True): 

# lambert forms may need some help being recognized, e.g. changing 

# 2**(3*x) + x**3*log(2)**3 + 3*x**2*log(2)**2 + 3*x*log(2) + 1 

# to 2**(3*x) + (x*log(2) + 1)**3 

g = _filtered_gens(eq.as_poly(), sym) 

up_or_log = set() 

for gi in g: 

if isinstance(gi, exp) or isinstance(gi, log): 

up_or_log.add(gi) 

elif gi.is_Pow: 

gisimp = powdenest(expand_power_exp(gi)) 

if gisimp.is_Pow and sym in gisimp.exp.free_symbols: 

up_or_log.add(gi) 

down = g.difference(up_or_log) 

eq_down = expand_log(expand_power_exp(eq)).subs( 

dict(list(zip(up_or_log, [0]*len(up_or_log))))) 

eq = expand_power_exp(factor(eq_down, deep=True) + (eq - eq_down)) 

rhs, lhs = _invert(eq, sym) 

if lhs.has(sym): 

try: 

poly = lhs.as_poly() 

g = _filtered_gens(poly, sym) 

return _solve_lambert(lhs - rhs, sym, g) 

except NotImplementedError: 

# maybe it's a convoluted function 

if len(g) == 2: 

try: 

gpu = bivariate_type(lhs - rhs, *g) 

if gpu is None: 

raise NotImplementedError 

g, p, u = gpu 

flags['bivariate'] = False 

inversion = _tsolve(g - u, sym, **flags) 

if inversion: 

sol = _solve(p, u, **flags) 

return list(ordered(set([i.subs(u, s) 

for i in inversion for s in sol]))) 

except NotImplementedError: 

pass 

else: 

pass 

 

if flags.pop('force', True): 

flags['force'] = False 

pos, reps = posify(lhs - rhs) 

for u, s in reps.items(): 

if s == sym: 

break 

else: 

u = sym 

if pos.has(u): 

try: 

soln = _solve(pos, u, **flags) 

return list(ordered([s.subs(reps) for s in soln])) 

except NotImplementedError: 

pass 

else: 

pass # here for coverage 

 

return # here for coverage 

 

 

# TODO: option for calculating J numerically 

 

@conserve_mpmath_dps 

def nsolve(*args, **kwargs): 

r""" 

Solve a nonlinear equation system numerically:: 

 

nsolve(f, [args,] x0, modules=['mpmath'], **kwargs) 

 

f is a vector function of symbolic expressions representing the system. 

args are the variables. If there is only one variable, this argument can 

be omitted. 

x0 is a starting vector close to a solution. 

 

Use the modules keyword to specify which modules should be used to 

evaluate the function and the Jacobian matrix. Make sure to use a module 

that supports matrices. For more information on the syntax, please see the 

docstring of lambdify. 

 

If the keyword arguments contain 'dict'=True (default is False) nsolve 

will return a list (perhaps empty) of solution mappings. This might be 

especially useful if you want to use nsolve as a fallback to solve since 

using the dict argument for both methods produces return values of 

consistent type structure. Please note: to keep this consistency with 

solve, the solution will be returned in a list even though nsolve 

(currently at least) only finds one solution at a time. 

 

Overdetermined systems are supported. 

 

>>> from sympy import Symbol, nsolve 

>>> import sympy 

>>> import mpmath 

>>> mpmath.mp.dps = 15 

>>> x1 = Symbol('x1') 

>>> x2 = Symbol('x2') 

>>> f1 = 3 * x1**2 - 2 * x2**2 - 1 

>>> f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8 

>>> print(nsolve((f1, f2), (x1, x2), (-1, 1))) 

Matrix([[-1.19287309935246], [1.27844411169911]]) 

 

For one-dimensional functions the syntax is simplified: 

 

>>> from sympy import sin, nsolve 

>>> from sympy.abc import x 

>>> nsolve(sin(x), x, 2) 

3.14159265358979 

>>> nsolve(sin(x), 2) 

3.14159265358979 

 

To solve with higher precision than the default, use the prec argument. 

 

>>> from sympy import cos 

>>> nsolve(cos(x) - x, 1) 

0.739085133215161 

>>> nsolve(cos(x) - x, 1, prec=50) 

0.73908513321516064165531208767387340401341175890076 

>>> cos(_) 

0.73908513321516064165531208767387340401341175890076 

 

To solve for complex roots of real functions, a nonreal initial point 

must be specified: 

 

>>> from sympy import I 

>>> nsolve(x**2 + 2, I) 

1.4142135623731*I 

 

mpmath.findroot is used and you can find there more extensive 

documentation, especially concerning keyword parameters and 

available solvers. Note, however, that functions which are very 

steep near the root the verification of the solution may fail. In 

this case you should use the flag `verify=False` and 

independently verify the solution. 

 

>>> from sympy import cos, cosh 

>>> from sympy.abc import i 

>>> f = cos(x)*cosh(x) - 1 

>>> nsolve(f, 3.14*100) 

Traceback (most recent call last): 

... 

ValueError: Could not find root within given tolerance. (1.39267e+230 > 2.1684e-19) 

>>> ans = nsolve(f, 3.14*100, verify=False); ans 

312.588469032184 

>>> f.subs(x, ans).n(2) 

2.1e+121 

>>> (f/f.diff(x)).subs(x, ans).n(2) 

7.4e-15 

 

One might safely skip the verification if bounds of the root are known 

and a bisection method is used: 

 

>>> bounds = lambda i: (3.14*i, 3.14*(i + 1)) 

>>> nsolve(f, bounds(100), solver='bisect', verify=False) 

315.730061685774 

 

Alternatively, a function may be better behaved when the 

denominator is ignored. Since this is not always the case, however, 

the decision of what function to use is left to the discretion of 

the user. 

 

>>> eq = x**2/(1 - x)/(1 - 2*x)**2 - 100 

>>> nsolve(eq, 0.46) 

Traceback (most recent call last): 

... 

ValueError: Could not find root within given tolerance. (10000 > 2.1684e-19) 

Try another starting point or tweak arguments. 

>>> nsolve(eq.as_numer_denom()[0], 0.46) 

0.46792545969349058 

""" 

# there are several other SymPy functions that use method= so 

# guard against that here 

if 'method' in kwargs: 

raise ValueError(filldedent(''' 

Keyword "method" should not be used in this context. When using 

some mpmath solvers directly, the keyword "method" is 

used, but when using nsolve (and findroot) the keyword to use is 

"solver".''')) 

 

if 'prec' in kwargs: 

prec = kwargs.pop('prec') 

import mpmath 

mpmath.mp.dps = prec 

else: 

prec = None 

 

# keyword argument to return result as a dictionary 

as_dict = kwargs.pop('dict', False) 

 

# interpret arguments 

if len(args) == 3: 

f = args[0] 

fargs = args[1] 

x0 = args[2] 

if iterable(fargs) and iterable(x0): 

if len(x0) != len(fargs): 

raise TypeError('nsolve expected exactly %i guess vectors, got %i' 

% (len(fargs), len(x0))) 

elif len(args) == 2: 

f = args[0] 

fargs = None 

x0 = args[1] 

if iterable(f): 

raise TypeError('nsolve expected 3 arguments, got 2') 

elif len(args) < 2: 

raise TypeError('nsolve expected at least 2 arguments, got %i' 

% len(args)) 

else: 

raise TypeError('nsolve expected at most 3 arguments, got %i' 

% len(args)) 

modules = kwargs.get('modules', ['mpmath']) 

if iterable(f): 

f = list(f) 

for i, fi in enumerate(f): 

if isinstance(fi, Equality): 

f[i] = fi.lhs - fi.rhs 

f = Matrix(f).T 

if not isinstance(f, Matrix): 

# assume it's a sympy expression 

if isinstance(f, Equality): 

f = f.lhs - f.rhs 

syms = f.free_symbols 

if fargs is None: 

fargs = syms.copy().pop() 

if not (len(syms) == 1 and (fargs in syms or fargs[0] in syms)): 

raise ValueError(filldedent(''' 

expected a one-dimensional and numerical function''')) 

 

# the function is much better behaved if there is no denominator 

# but sending the numerator is left to the user since sometimes 

# the function is better behaved when the denominator is present 

# e.g., issue 11768 

 

f = lambdify(fargs, f, modules) 

x = sympify(findroot(f, x0, **kwargs)) 

if as_dict: 

return [dict([(fargs, x)])] 

return x 

 

if len(fargs) > f.cols: 

raise NotImplementedError(filldedent(''' 

need at least as many equations as variables''')) 

verbose = kwargs.get('verbose', False) 

if verbose: 

print('f(x):') 

print(f) 

# derive Jacobian 

J = f.jacobian(fargs) 

if verbose: 

print('J(x):') 

print(J) 

# create functions 

f = lambdify(fargs, f.T, modules) 

J = lambdify(fargs, J, modules) 

# solve the system numerically 

x = findroot(f, x0, J=J, **kwargs) 

if as_dict: 

return [dict(zip(fargs, [sympify(xi) for xi in x]))] 

return Matrix(x) 

 

 

def _invert(eq, *symbols, **kwargs): 

"""Return tuple (i, d) where ``i`` is independent of ``symbols`` and ``d`` 

contains symbols. ``i`` and ``d`` are obtained after recursively using 

algebraic inversion until an uninvertible ``d`` remains. If there are no 

free symbols then ``d`` will be zero. Some (but not necessarily all) 

solutions to the expression ``i - d`` will be related to the solutions of 

the original expression. 

 

Examples 

======== 

 

>>> from sympy.solvers.solvers import _invert as invert 

>>> from sympy import sqrt, cos 

>>> from sympy.abc import x, y 

>>> invert(x - 3) 

(3, x) 

>>> invert(3) 

(3, 0) 

>>> invert(2*cos(x) - 1) 

(1/2, cos(x)) 

>>> invert(sqrt(x) - 3) 

(3, sqrt(x)) 

>>> invert(sqrt(x) + y, x) 

(-y, sqrt(x)) 

>>> invert(sqrt(x) + y, y) 

(-sqrt(x), y) 

>>> invert(sqrt(x) + y, x, y) 

(0, sqrt(x) + y) 

 

If there is more than one symbol in a power's base and the exponent 

is not an Integer, then the principal root will be used for the 

inversion: 

 

>>> invert(sqrt(x + y) - 2) 

(4, x + y) 

>>> invert(sqrt(x + y) - 2) 

(4, x + y) 

 

If the exponent is an integer, setting ``integer_power`` to True 

will force the principal root to be selected: 

 

>>> invert(x**2 - 4, integer_power=True) 

(2, x) 

 

""" 

eq = sympify(eq) 

free = eq.free_symbols 

if not symbols: 

symbols = free 

if not free & set(symbols): 

return eq, S.Zero 

 

dointpow = bool(kwargs.get('integer_power', False)) 

 

lhs = eq 

rhs = S.Zero 

while True: 

was = lhs 

while True: 

indep, dep = lhs.as_independent(*symbols) 

 

# dep + indep == rhs 

if lhs.is_Add: 

# this indicates we have done it all 

if indep is S.Zero: 

break 

 

lhs = dep 

rhs -= indep 

 

# dep * indep == rhs 

else: 

# this indicates we have done it all 

if indep is S.One: 

break 

 

lhs = dep 

rhs /= indep 

 

# collect like-terms in symbols 

if lhs.is_Add: 

terms = {} 

for a in lhs.args: 

i, d = a.as_independent(*symbols) 

terms.setdefault(d, []).append(i) 

if any(len(v) > 1 for v in terms.values()): 

args = [] 

for d, i in terms.items(): 

if len(i) > 1: 

args.append(Add(*i)*d) 

else: 

args.append(i[0]*d) 

lhs = Add(*args) 

 

# if it's a two-term Add with rhs = 0 and two powers we can get the 

# dependent terms together, e.g. 3*f(x) + 2*g(x) -> f(x)/g(x) = -2/3 

if lhs.is_Add and not rhs and len(lhs.args) == 2 and \ 

not lhs.is_polynomial(*symbols): 

a, b = ordered(lhs.args) 

ai, ad = a.as_independent(*symbols) 

bi, bd = b.as_independent(*symbols) 

if any(_ispow(i) for i in (ad, bd)): 

a_base, a_exp = ad.as_base_exp() 

b_base, b_exp = bd.as_base_exp() 

if a_base == b_base: 

# a = -b 

lhs = powsimp(powdenest(ad/bd)) 

rhs = -bi/ai 

else: 

rat = ad/bd 

_lhs = powsimp(ad/bd) 

if _lhs != rat: 

lhs = _lhs 

rhs = -bi/ai 

if ai*bi is S.NegativeOne: 

if all( 

isinstance(i, Function) for i in (ad, bd)) and \ 

ad.func == bd.func and len(ad.args) == len(bd.args): 

if len(ad.args) == 1: 

lhs = ad.args[0] - bd.args[0] 

else: 

# should be able to solve 

# f(x, y) == f(2, 3) -> x == 2 

# f(x, x + y) == f(2, 3) -> x == 2 or x == 3 - y 

raise NotImplementedError('equal function with more than 1 argument') 

 

elif lhs.is_Mul and any(_ispow(a) for a in lhs.args): 

lhs = powsimp(powdenest(lhs)) 

 

if lhs.is_Function: 

if hasattr(lhs, 'inverse') and len(lhs.args) == 1: 

# -1 

# f(x) = g -> x = f (g) 

# 

# /!\ inverse should not be defined if there are multiple values 

# for the function -- these are handled in _tsolve 

# 

rhs = lhs.inverse()(rhs) 

lhs = lhs.args[0] 

elif isinstance(lhs, atan2): 

y, x = lhs.args 

lhs = 2*atan(y/(sqrt(x**2 + y**2) + x)) 

if rhs and lhs.is_Pow and lhs.exp.is_Integer and lhs.exp < 0: 

lhs = 1/lhs 

rhs = 1/rhs 

 

# base**a = b -> base = b**(1/a) if 

# a is an Integer and dointpow=True (this gives real branch of root) 

# a is not an Integer and the equation is multivariate and the 

# base has more than 1 symbol in it 

# The rationale for this is that right now the multi-system solvers 

# doesn't try to resolve generators to see, for example, if the whole 

# system is written in terms of sqrt(x + y) so it will just fail, so we 

# do that step here. 

if lhs.is_Pow and ( 

lhs.exp.is_Integer and dointpow or not lhs.exp.is_Integer and 

len(symbols) > 1 and len(lhs.base.free_symbols & set(symbols)) > 1): 

rhs = rhs**(1/lhs.exp) 

lhs = lhs.base 

 

if lhs == was: 

break 

return rhs, lhs 

 

 

def unrad(eq, *syms, **flags): 

""" Remove radicals with symbolic arguments and return (eq, cov), 

None or raise an error: 

 

None is returned if there are no radicals to remove. 

 

NotImplementedError is raised if there are radicals and they cannot be 

removed or if the relationship between the original symbols and the 

change of variable needed to rewrite the system as a polynomial cannot 

be solved. 

 

Otherwise the tuple, ``(eq, cov)``, is returned where:: 

 

``eq``, ``cov`` 

``eq`` is an equation without radicals (in the symbol(s) of 

interest) whose solutions are a superset of the solutions to the 

original expression. ``eq`` might be re-written in terms of a new 

variable; the relationship to the original variables is given by 

``cov`` which is a list containing ``v`` and ``v**p - b`` where 

``p`` is the power needed to clear the radical and ``b`` is the 

radical now expressed as a polynomial in the symbols of interest. 

For example, for sqrt(2 - x) the tuple would be 

``(c, c**2 - 2 + x)``. The solutions of ``eq`` will contain 

solutions to the original equation (if there are any). 

 

``syms`` 

an iterable of symbols which, if provided, will limit the focus of 

radical removal: only radicals with one or more of the symbols of 

interest will be cleared. All free symbols are used if ``syms`` is not 

set. 

 

``flags`` are used internally for communication during recursive calls. 

Two options are also recognized:: 

 

``take``, when defined, is interpreted as a single-argument function 

that returns True if a given Pow should be handled. 

 

Radicals can be removed from an expression if:: 

 

* all bases of the radicals are the same; a change of variables is 

done in this case. 

* if all radicals appear in one term of the expression 

* there are only 4 terms with sqrt() factors or there are less than 

four terms having sqrt() factors 

* there are only two terms with radicals 

 

Examples 

======== 

 

>>> from sympy.solvers.solvers import unrad 

>>> from sympy.abc import x 

>>> from sympy import sqrt, Rational, root, real_roots, solve 

 

>>> unrad(sqrt(x)*x**Rational(1, 3) + 2) 

(x**5 - 64, []) 

>>> unrad(sqrt(x) + root(x + 1, 3)) 

(x**3 - x**2 - 2*x - 1, []) 

>>> eq = sqrt(x) + root(x, 3) - 2 

>>> unrad(eq) 

(_p**3 + _p**2 - 2, [_p, _p**6 - x]) 

 

""" 

_inv_error = 'cannot get an analytical solution for the inversion' 

 

uflags = dict(check=False, simplify=False) 

 

def _cov(p, e): 

if cov: 

# XXX - uncovered 

oldp, olde = cov 

if Poly(e, p).degree(p) in (1, 2): 

cov[:] = [p, olde.subs(oldp, _solve(e, p, **uflags)[0])] 

else: 

raise NotImplementedError 

else: 

cov[:] = [p, e] 

 

def _canonical(eq, cov): 

if cov: 

# change symbol to vanilla so no solutions are eliminated 

p, e = cov 

rep = {p: Dummy(p.name)} 

eq = eq.xreplace(rep) 

cov = [p.xreplace(rep), e.xreplace(rep)] 

 

# remove constants and powers of factors since these don't change 

# the location of the root; XXX should factor or factor_terms be used? 

eq = factor_terms(_mexpand(eq.as_numer_denom()[0], recursive=True), clear=True) 

if eq.is_Mul: 

args = [] 

for f in eq.args: 

if f.is_number: 

continue 

if f.is_Pow and _take(f, True): 

args.append(f.base) 

else: 

args.append(f) 

eq = Mul(*args) # leave as Mul for more efficient solving 

 

# make the sign canonical 

free = eq.free_symbols 

if len(free) == 1: 

if eq.coeff(free.pop()**degree(eq)).could_extract_minus_sign(): 

eq = -eq 

elif eq.could_extract_minus_sign(): 

eq = -eq 

 

return eq, cov 

 

def _Q(pow): 

# return leading Rational of denominator of Pow's exponent 

c = pow.as_base_exp()[1].as_coeff_Mul()[0] 

if not c.is_Rational: 

return S.One 

return c.q 

 

# define the _take method that will determine whether a term is of interest 

def _take(d, take_int_pow): 

# return True if coefficient of any factor's exponent's den is not 1 

for pow in Mul.make_args(d): 

if not (pow.is_Symbol or pow.is_Pow): 

continue 

b, e = pow.as_base_exp() 

if not b.has(*syms): 

continue 

if not take_int_pow and _Q(pow) == 1: 

continue 

free = pow.free_symbols 

if free.intersection(syms): 

return True 

return False 

_take = flags.setdefault('_take', _take) 

 

cov, nwas, rpt = [flags.setdefault(k, v) for k, v in 

sorted(dict(cov=[], n=None, rpt=0).items())] 

 

# preconditioning 

eq = powdenest(factor_terms(eq, radical=True, clear=True)) 

eq, d = eq.as_numer_denom() 

eq = _mexpand(eq, recursive=True) 

if eq.is_number: 

return 

 

syms = set(syms) or eq.free_symbols 

poly = eq.as_poly() 

gens = [g for g in poly.gens if _take(g, True)] 

if not gens: 

return 

 

# check for trivial case 

# - already a polynomial in integer powers 

if all(_Q(g) == 1 for g in gens): 

return 

# - an exponent has a symbol of interest (don't handle) 

if any(g.as_base_exp()[1].has(*syms) for g in gens): 

return 

 

def _rads_bases_lcm(poly): 

# if all the bases are the same or all the radicals are in one 

# term, `lcm` will be the lcm of the denominators of the 

# exponents of the radicals 

lcm = 1 

rads = set() 

bases = set() 

for g in poly.gens: 

if not _take(g, False): 

continue 

q = _Q(g) 

if q != 1: 

rads.add(g) 

lcm = ilcm(lcm, q) 

bases.add(g.base) 

return rads, bases, lcm 

rads, bases, lcm = _rads_bases_lcm(poly) 

 

if not rads: 

return 

 

covsym = Dummy('p', nonnegative=True) 

 

# only keep in syms symbols that actually appear in radicals; 

# and update gens 

newsyms = set() 

for r in rads: 

newsyms.update(syms & r.free_symbols) 

if newsyms != syms: 

syms = newsyms 

gens = [g for g in gens if g.free_symbols & syms] 

 

# get terms together that have common generators 

drad = dict(list(zip(rads, list(range(len(rads)))))) 

rterms = {(): []} 

args = Add.make_args(poly.as_expr()) 

for t in args: 

if _take(t, False): 

common = set(t.as_poly().gens).intersection(rads) 

key = tuple(sorted([drad[i] for i in common])) 

else: 

key = () 

rterms.setdefault(key, []).append(t) 

others = Add(*rterms.pop(())) 

rterms = [Add(*rterms[k]) for k in rterms.keys()] 

 

# the output will depend on the order terms are processed, so 

# make it canonical quickly 

rterms = list(reversed(list(ordered(rterms)))) 

 

ok = False # we don't have a solution yet 

depth = sqrt_depth(eq) 

 

if len(rterms) == 1 and not (rterms[0].is_Add and lcm > 2): 

eq = rterms[0]**lcm - ((-others)**lcm) 

ok = True 

else: 

if len(rterms) == 1 and rterms[0].is_Add: 

rterms = list(rterms[0].args) 

if len(bases) == 1: 

b = bases.pop() 

if len(syms) > 1: 

free = b.free_symbols 

x = {g for g in gens if g.is_Symbol} & free 

if not x: 

x = free 

x = ordered(x) 

else: 

x = syms 

x = list(x)[0] 

try: 

inv = _solve(covsym**lcm - b, x, **uflags) 

if not inv: 

raise NotImplementedError 

eq = poly.as_expr().subs(b, covsym**lcm).subs(x, inv[0]) 

_cov(covsym, covsym**lcm - b) 

return _canonical(eq, cov) 

except NotImplementedError: 

pass 

else: 

# no longer consider integer powers as generators 

gens = [g for g in gens if _Q(g) != 1] 

 

if len(rterms) == 2: 

if not others: 

eq = rterms[0]**lcm - (-rterms[1])**lcm 

ok = True 

elif not log(lcm, 2).is_Integer: 

# the lcm-is-power-of-two case is handled below 

r0, r1 = rterms 

if flags.get('_reverse', False): 

r1, r0 = r0, r1 

i0 = _rads0, _bases0, lcm0 = _rads_bases_lcm(r0.as_poly()) 

i1 = _rads1, _bases1, lcm1 = _rads_bases_lcm(r1.as_poly()) 

for reverse in range(2): 

if reverse: 

i0, i1 = i1, i0 

r0, r1 = r1, r0 

_rads1, _, lcm1 = i1 

_rads1 = Mul(*_rads1) 

t1 = _rads1**lcm1 

c = covsym**lcm1 - t1 

for x in syms: 

try: 

sol = _solve(c, x, **uflags) 

if not sol: 

raise NotImplementedError 

neweq = r0.subs(x, sol[0]) + covsym*r1/_rads1 + \ 

others 

tmp = unrad(neweq, covsym) 

if tmp: 

eq, newcov = tmp 

if newcov: 

newp, newc = newcov 

_cov(newp, c.subs(covsym, 

_solve(newc, covsym, **uflags)[0])) 

else: 

_cov(covsym, c) 

else: 

eq = neweq 

_cov(covsym, c) 

ok = True 

break 

except NotImplementedError: 

if reverse: 

raise NotImplementedError( 

'no successful change of variable found') 

else: 

pass 

if ok: 

break 

elif len(rterms) == 3: 

# two cube roots and another with order less than 5 

# (so an analytical solution can be found) or a base 

# that matches one of the cube root bases 

info = [_rads_bases_lcm(i.as_poly()) for i in rterms] 

RAD = 0 

BASES = 1 

LCM = 2 

if info[0][LCM] != 3: 

info.append(info.pop(0)) 

rterms.append(rterms.pop(0)) 

elif info[1][LCM] != 3: 

info.append(info.pop(1)) 

rterms.append(rterms.pop(1)) 

if info[0][LCM] == info[1][LCM] == 3: 

if info[1][BASES] != info[2][BASES]: 

info[0], info[1] = info[1], info[0] 

rterms[0], rterms[1] = rterms[1], rterms[0] 

if info[1][BASES] == info[2][BASES]: 

eq = rterms[0]**3 + (rterms[1] + rterms[2] + others)**3 

ok = True 

elif info[2][LCM] < 5: 

# a*root(A, 3) + b*root(B, 3) + others = c 

a, b, c, d, A, B = [Dummy(i) for i in 'abcdAB'] 

# zz represents the unraded expression into which the 

# specifics for this case are substituted 

zz = (c - d)*(A**3*a**9 + 3*A**2*B*a**6*b**3 - 

3*A**2*a**6*c**3 + 9*A**2*a**6*c**2*d - 9*A**2*a**6*c*d**2 + 

3*A**2*a**6*d**3 + 3*A*B**2*a**3*b**6 + 21*A*B*a**3*b**3*c**3 - 

63*A*B*a**3*b**3*c**2*d + 63*A*B*a**3*b**3*c*d**2 - 

21*A*B*a**3*b**3*d**3 + 3*A*a**3*c**6 - 18*A*a**3*c**5*d + 

45*A*a**3*c**4*d**2 - 60*A*a**3*c**3*d**3 + 45*A*a**3*c**2*d**4 - 

18*A*a**3*c*d**5 + 3*A*a**3*d**6 + B**3*b**9 - 3*B**2*b**6*c**3 + 

9*B**2*b**6*c**2*d - 9*B**2*b**6*c*d**2 + 3*B**2*b**6*d**3 + 

3*B*b**3*c**6 - 18*B*b**3*c**5*d + 45*B*b**3*c**4*d**2 - 

60*B*b**3*c**3*d**3 + 45*B*b**3*c**2*d**4 - 18*B*b**3*c*d**5 + 

3*B*b**3*d**6 - c**9 + 9*c**8*d - 36*c**7*d**2 + 84*c**6*d**3 - 

126*c**5*d**4 + 126*c**4*d**5 - 84*c**3*d**6 + 36*c**2*d**7 - 

9*c*d**8 + d**9) 

def _t(i): 

b = Mul(*info[i][RAD]) 

return cancel(rterms[i]/b), Mul(*info[i][BASES]) 

aa, AA = _t(0) 

bb, BB = _t(1) 

cc = -rterms[2] 

dd = others 

eq = zz.xreplace(dict(zip( 

(a, A, b, B, c, d), 

(aa, AA, bb, BB, cc, dd)))) 

ok = True 

# handle power-of-2 cases 

if not ok: 

if log(lcm, 2).is_Integer and (not others and 

len(rterms) == 4 or len(rterms) < 4): 

def _norm2(a, b): 

return a**2 + b**2 + 2*a*b 

 

if len(rterms) == 4: 

# (r0+r1)**2 - (r2+r3)**2 

r0, r1, r2, r3 = rterms 

eq = _norm2(r0, r1) - _norm2(r2, r3) 

ok = True 

elif len(rterms) == 3: 

# (r1+r2)**2 - (r0+others)**2 

r0, r1, r2 = rterms 

eq = _norm2(r1, r2) - _norm2(r0, others) 

ok = True 

elif len(rterms) == 2: 

# r0**2 - (r1+others)**2 

r0, r1 = rterms 

eq = r0**2 - _norm2(r1, others) 

ok = True 

 

new_depth = sqrt_depth(eq) if ok else depth 

rpt += 1 # XXX how many repeats with others unchanging is enough? 

if not ok or ( 

nwas is not None and len(rterms) == nwas and 

new_depth is not None and new_depth == depth and 

rpt > 3): 

raise NotImplementedError('Cannot remove all radicals') 

 

flags.update(dict(cov=cov, n=len(rterms), rpt=rpt)) 

neq = unrad(eq, *syms, **flags) 

if neq: 

eq, cov = neq 

eq, cov = _canonical(eq, cov) 

return eq, cov 

 

from sympy.solvers.bivariate import ( 

bivariate_type, _solve_lambert, _filtered_gens)